Abstract

River embankments and small earth dams are linear retaining structures commonly used to protect densely populated areas from flood phenomena and to provide water reservoirs for human or agricultural use. Their continuity and uniformity are fundamental to their structural efficiency. Due to their significant length and the localized nature of potential weakness points, their characterization cannot rely only on local geotechnical investigations: it requires the application of efficient and affordable investigation methods. The need for new screening tools is becoming increasingly important worldwide because most river embankments and small earth dams are reaching their design life limit due to aging. This study used a new electric streamer and a seismic streamer for the combined measurement of resistivity and shear wave velocity to investigate the Arignano earth dam (Piedmont Region, northwestern Italy), a historical reservoir used for agricultural purposes. A procedure is also proposed to assess hydraulic conductivity from the measured geophysical parameters. The results of this assessment were compared with available geotechnical investigations and also used for calibrating the proposed procedure. Results are in good agreement when compared with local geotechnical investigations. The proposed procedure can therefore provide engineers and local authorities with information to plan maintenance or urgent measures for reducing flood risk.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Data and codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work has been funded by FINPIEMONTE within the POR FESR 14/20 “Poli di Innovazione—Agenda Strategica di Ricerca 2016—Linea B” call for the project Mon.A.L.I.S.A. (313-67). The earth dam investigated is one of the case studies of the “ReSba” (Resilienza degli Sbarramenti) project supported by the European Union for regional development (Interreg-ALCOTRA) for the French-Italian Alps. Authors are grateful to R. Del Vesco, D. Patrocco, G. Bodrato, and S. La Monica from Piedmont Region Administration for their support. The authors thank Daniele Negri for helping during surveys. The authors are also thankful to the Handling Editor, Prof. Catherine O’Sullivan, for her precious and constructive comments and the Associate Editor and two anonymous reviewers’ suggestions for helping us to improve our paper.

References

Abdulsamad, F., A. Revil, A. Soueid Ahmed, A. Coperey, M. Karaoulis, S. Nicaise, and L. Peyras. 2019. “Induced polarization tomography applied to the detection and the monitoring of leaks in embankments.” Eng. Geol. 254 (May): 89–101. https://doi.org/10.1016/j.enggeo.2019.04.001.
Al-Fares, W. 2014. “Application of electrical resistivity tomography technique for characterizing leakage problem in Abu Baara earth dam, Syria.” Int. J. Geophys. 2014: 368128. https://doi.org/10.1155/2014/368128.
Al-Saigh, N. H., Z. S. Mohammed, and M. S. Dahham. 1994. “Detection of water leakage from dams by self-potential method.” Eng. Geol. 37 (2): 115–121. https://doi.org/10.1016/0013-7952(94)90046-9.
Arato, A., C. Comina, and C. Comotti. 2018. “Verso un land-streamer sismo-elettrico.” [In Italian.] In Proc., 37th GNGTS. Bologna, Italy: Gruppo Nazionale di Geofisica della Terra Solida.
Arato, A., F. Fantini, A. Antonietti, M. Naldi, L. Vai, A. Chiappone, F. Vagnon, and C. Comina. 2019. “Applicazione di un nuovo land streamer geoelettrico per lo studio dell’argine fluviale del fiume Bormida (AL).” [In Italian.] In Proc., 38th GNGTS. Rome, Italy: Gruppo Nazionale di Geofisica della Terra Solida.
Arato, A., M. Naldi, L. Vai, A. Chiappone, F. Vagnon, and C. Comina. 2020. “Towards a seismo-electric land streamer.” In Proc., 6th Int. Conf. on Geotechnical and Geophysical Site Characterization. Budapest, Hungary: ISC.
Arato, A., F. Vagnon, and C. Comina. 2022. “First application of a new seismo-electric streamer for combined resistivity and seismic measurements along linearly extended earth structures.” Near Surf. Geophys. 20 (2): 117–134. https://doi.org/10.1002/nsg.12198.
Archie, G. E. 1942. “The electrical resistivity log as an aid in determining some reservoir characteristics.” Trans. AIME 146 (1): 54–62. https://doi.org/10.2118/942054-G.
Arosio, D., S. Munda, G. Tresoldi, M. Papini, L. Longoni, and L. Zanzi. 2017. “A customized resistivity system for monitoring saturation and seepage in earthen levees: Installation and validation.” Open Geosci. 9 (1): 457–467. https://doi.org/10.1515/geo-2017-0035.
ASTM International. 2000. Standard test method for permeability of granular soils (constant head). D 2434-68. West Conshohocken, PA: ASTM.
ASTM International. 2011. Standard test method for field measurement of hydraulic conductivity using borehole infiltration. D6391. West Conshohocken, PA: ASTM.
Bièvre, G., P. Lacroix, L. Oxarango, D. Goutaland, G. Monnot, and Y. Fargier. 2017. “Integration of geotechnical and geophysical techniques for the characterization of a small earth-filled canal dyke and the localization of water leakage.” J. Appl. Geophys. 139 (Apr): 1–15. https://doi.org/10.1016/j.jappgeo.2017.02.002.
Bolève, A., A. Revil, F. Janod, J. L. Mattiuzzo, and J. J. Fry. 2009. “Preferential fluid flow pathways in embankment dams imaged by self-potential tomography.” Near Surf. Geophys. 7 (5–6): 447–462. https://doi.org/10.3997/1873-0604.2009012.
Brovelli, A., and G. Cassiani. 2010. “A combination of the Hashin-Shtrikman bounds aimed at modelling electrical conductivity and permittivity of variably saturated porous media.” Geophys. J. Int. 180 (1): 225–237. https://doi.org/10.1111/j.1365-246X.2009.04415.x.
Busato, L., J. Boaga, L. Peruzzo, M. Himi, S. Cola, S. Bersan, and G. Cassiani. 2016. “Combined geophysical surveys for the characterization of a reconstructed river embankment.” Eng. Geol. 211 (Aug): 74–84. https://doi.org/10.1016/j.enggeo.2016.06.023.
Camarero, P. L., C. A. Moreira, and H. G. Pereira. 2019. “Analysis of the physical integrity of earth dams from electrical resistivity tomography (ERT) in Brazil.” Pure Appl. Geophys. 176 (12): 5363–5375. https://doi.org/10.1007/s00024-019-02271-8.
Carcione, J. M., B. Ursin, and J. I. Nordskag. 2007. “Cross-property relations between electrical conductivity and the seismic velocity of rocks.” Geophysics 72 (5): E193–E204. https://doi.org/10.1190/1.2762224.
Cardarelli, E., M. Cercato, and G. De Donno. 2014. “Characterization of an earth-filled dam through the combined use of electrical resistivity tomography, P- and SH-wave seismic tomography and surface wave data.” J. Appl. Geophys. 106 (Jul): 87–95. https://doi.org/10.1016/j.jappgeo.2014.04.007.
Carman, P. C. 1956. Flow of gases through porous media. Cambridge, MA: Academic Press.
Chen, C., J. Liu, J. Xia, and Z. Li. 2006. “Integrated geophysical techniques in detecting hidden dangers in river embankments.” J. Environ. Eng. Geophys. 11 (2): 83–94. https://doi.org/10.2113/JEEG11.2.83.
Cho, I. K., and J. Y. Yeom. 2007. “Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam.” Geophysics 72 (2): G31–G38. https://doi.org/10.1190/1.2435200.
Comina, C., F. Vagnon, A. Arato, and A. Antonietti. 2020a. “Effective Vs and Vp characterization from Surface Waves streamer data along river embankments.” J. Appl. Geophys. 183 (Dec): 104221. https://doi.org/10.1016/j.jappgeo.2020.104221.
Comina, C., F. Vagnon, A. Arato, F. Fantini, and M. Naldi. 2020b. “A new electric streamer for the characterization of river embankments.” Eng. Geol. 276 (Oct): 105770. https://doi.org/10.1016/j.enggeo.2020.105770.
Conte, E., R. M. Cosentini, and A. Troncone. 2009. “Shear and dilatational wave velocities for unsaturated soils.” Soil Dyn. Earthquake Eng. 29 (6): 946–952. https://doi.org/10.1016/j.soildyn.2008.11.001.
Cosentini, R. M., and S. Foti. 2014. “Evaluation of porosity and degree of saturation from seismic and electrical data.” Géotechnique 64 (4): 278–286. https://doi.org/10.1680/geot.13.P.075.
Duda, A., Z. Koza, and M. Matyka. 2011. “Hydraulic tortuosity in arbitrary porous media flow.” Phys. Rev. E 84 (3): 036319. https://doi.org/10.1103/PhysRevE.84.036319.
Fargier, Y., S. P. Lopes, C. Fauchard, D. François, and P. Côte. 2014. “DC-electrical resistivity imaging for embankment dike investigation: A 3D extended normalisation approach.” J. Appl. Geophys. 103 (Apr): 245–256. https://doi.org/10.1016/j.jappgeo.2014.02.007.
Foti, S., et al. 2018. “Guidelines for the good practice of surface wave analysis: A product of the InterPACIFIC project.” Bull. Earthquake Eng. 16 (6): 2367–2420. https://doi.org/10.1007/s10518-017-0206-7.
Freeze, R. A., and J. A. Cherry. 1979. Groundwater. Englewood Cliffs, NJ: Prentice-Hall.
Glover, P. W. J., M. J. Hole, and J. Pous. 2000. “A modified Archie’s law for two conducting phases.” Earth Planet. Sci. Lett. 180 (3–4): 369–383. https://doi.org/10.1016/S0012-821X(00)00168-0.
Goff, D. S., J. M. Lorenzo, and K. Hayashi. 2015. “Resistivity and shear wave velocity as a predictive tool of sediment type in coastal levee foundation soils.” In Proc., 28th Symp. on the Application of Geophysics to Engineering and Environmental Problems 2015, SAGEEP 2015, 145–154. Denver, CO: Environmental & Engineering Geophysical Society.
Guerin, G., D. S. Goldberg, and T. S. Collett. 2006. “Sonic velocities in an active gas hydrate system.” In Proc., ODP, Sci. Results, 2014, edited by A. M. Trehu, G. Bohrmann, M. E. Torres, and F. S. Colwell, 1–38. College Station, TX: Ocean Drilling Program.
Hashin, Z., and S. Shtrikman. 1963. “A variational approach to the theory of the elastic behaviour of multiphase materials.” J. Mech. Phys. Solids 11 (2): 127–140. https://doi.org/10.1016/0022-5096(63)90060-7.
Hayashi, K., T. Inazaki, K. Kitao, and T. Kita. 2013. “Statistical estimation of geotechnical soil parameters in terms of cross-plots of S-wave velocity and resistivity in Japanese levees.” In Proc., Society of Exploration Geophysicists Int. Exposition and 83rd Annual Meeting, SEG 2013: Expanding Geophysical Frontiers, 1259–1263. Houston, TX: Society of Exploration Geophysicists.
Jessop, M., A. Jardani, A. Revil, and V. Kofoed. 2018. “Magnetometric resistivity: A new approach and its application to the detection of preferential flow paths in mine waste rock dumps.” Geophys. J. Int. 215 (1): 222–239. https://doi.org/10.1093/gji/ggy275.
Jodry, C., S. Palma Lopes, Y. Fargier, M. Sanchez, and P. Côte. 2019. “2D-ERT monitoring of soil moisture seasonal behaviour in a river levee: A case study.” J. Appl. Geophys. 167 (Aug): 140–151. https://doi.org/10.1016/j.jappgeo.2019.05.008.
Kim, J. H., J. A. Ochoa, and S. Whitaker. 1987. “Diffusion in anisotropic porous media.” Transp. Media 2 (4): 327–356.
Koponen, A., M. Kataja, and J. Timonen. 1996. “Tortuous flow in porous media.” Phys. Rev. E 54 (1): 406. https://doi.org/10.1103/PhysRevE.54.406.
Koponen, A., M. Kataja, and J. Timonen. 1997. “Permeability and effective porosity of porous media.” Phys. Rev. E 56 (3): 3319–3325. https://doi.org/10.1103/PhysRevE.56.3319.
Lane, J. W., J. Ivanov, F. D. Day-Lewis, D. Clemens, R. Patev, and R. D. Miller. 2008. “Levee evaluation using MASW: Preliminary findings from the citrus lakefront levee, New Orleans, Louisiana.” In Proc., 21st Symp. on the Application of Geophysics to Engineering and Environmental Problems, 574–583. Denver, CO: Environmental and Engineering Geophysical Society. https://doi.org/10.4133/1.2963312.
Lapenna, V., D. Patella, and S. Piscitelli. 2000. “Tomographic analysis of self-potential data in a seismic area of Southern Italy.” Ann. Geofis. 43 (2): 361–373. https://doi.org/10.4401/ag-3638.
Liu, Y., and P. K. Kitanidis. 2013. “Tortuosity and Archie’s law.” In Advances in hydrogeology, 115–126. New York: Springer.
Loke, M. H., and R. D. Barker. 1996. “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method.” Geophys. Prospect. 44 (1): 131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x.
Marchetti, S. 1980. “In situ tests by flat dilatometer.” J. Geotech. Eng. Div. 106 (3): 299–321. https://doi.org/10.1061/AJGEB6.0000934.
Martínez-Moreno, F. J., F. Delgado-Ramos, J. Galindo-Zaldívar, W. Martín-Rosales, M. López-Chicano, and L. González-Castillo. 2018. “Identification of leakage and potential areas for internal erosion combining ERT and IP techniques at the Negratín Dam left abutment (Granada, southern Spain).” Eng. Geol. 240 (Jun): 74–80. https://doi.org/10.1016/j.enggeo.2018.04.012.
Matyka, M., A. Khalili, and Z. Koza. 2008. “Tortuosity-porosity relation in porous media flow.” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 78 (2): 026306. https://doi.org/10.1103/PhysRevE.78.026306.
Mavko, G., T. Mukerji, and J. Dvorkin. 2009. The rock physics handbook: Tools for seismic analysis of porous media. 2nd ed. Cambridge, UK: Cambridge University Press.
Min, D. J., and H. S. Kim. 2006. “Feasibility of the surface-wave method for the assessment of physical properties of a dam using numerical analysis.” J. Appl. Geophys. 59 (3): 236–243. https://doi.org/10.1016/j.jappgeo.2005.09.004.
Murphy, W. F. 1982. “Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials.” Ph.D. dissertation, Dept. of Geophysics, Stanford Univ.
Panthulu, T. V., C. Krishnaiah, and J. M. Shirke. 2001. “Detection of seepage paths in earth dams using self-potential and electrical resistivity methods.” Eng. Geol. 59 (3–4): 281–295. https://doi.org/10.1016/S0013-7952(00)00082-X.
Pisani, L. 2011. “Simple expression for the tortuosity of porous media.” Transp. Porous Media 88 (2): 193–203. https://doi.org/10.1007/s11242-011-9734-9.
Rayleigh, L. 1892. “On the influence of obstacles arranged in rectangular order upon the properties of a medium.” Philos. Mag. 34 (211): 481–502. https://doi.org/10.1080/14786449208620364.
Revil, A., L. Cary, Q. Fan, A. Finizola, and F. Trolard. 2005. “Self-potential signals associated with preferential ground water flow pathways in a buried paleo-channel.” Geophys. Res. Lett. 32 (7): L07401. https://doi.org/10.1029/2004GL022124.
Robertson, P. K. 2010. “Soil behaviour type from the CPT: An update.” In vol. 2 of Proc., 2nd Int. Symp. on Cone Penetration Testing, 575–583. California: CPT’10 Organizing Committee.
Sahin, A. U. 2016. “A new parameter estimation procedure for pumping test analysis using a radial basis function collocation method.” Environ. Earth Sci. 75 (3): 1–13. https://doi.org/10.1007/s12665-015-5079-y.
Seokhoon, O. 2012. “Electrical resistivity response due to variation in embankment shape and reservoir levels.” Environ. Earth Sci. 65 (3): 571–579. https://doi.org/10.1007/s12665-011-1104-y.
Socco, L. V., and C. Comina. 2017. “Time-average velocity estimation through surface-wave analysis: Part 2—P-wave velocity.” Geophysics 82 (3): U61–U73. https://doi.org/10.1190/geo2016-0368.1.
Socco, L. V., C. Comina, and F. K. Anjom. 2017. “Time-average velocity estimation through surface-wave analysis: Part 1—S-wave velocity.” Geophysics 82 (3): U49–U59. https://doi.org/10.1190/geo2016-0367.1.
Soueid Ahmed, A., A. Revil, F. Abdulsamad, B. Steck, C. Vergniault, and V. Guihard. 2020a. “Induced polarization as a tool to non-intrusively characterize embankment hydraulic properties.” Eng. Geol. 271 (Jun): 105604. https://doi.org/10.1016/j.enggeo.2020.105604.
Soueid Ahmed, A., A. Revil, A. Bolève, B. Steck, C. Vergniault, J. R. Courivaud, D. Jougnot, and M. Abbas. 2020b. “Determination of the permeability of seepage flow paths in dams from self-potential measurements.” Eng. Geol. 268 (Apr): 105514. https://doi.org/10.1016/j.enggeo.2020.105514.
Takahashi, T., T. Aizawa, K. Murata, H. Nishio, S. Consultants, and T. Matsuoka. 2014. “Soil permeability profiling on a river embankment using integrated geophysical data.” In Proc., Society of Exploration Geophysicists Int. Exposition and 84th Annual Meeting SEG 2014, 4534–4538. Houston, TX: Society of Exploration Geophysicists.
Tresoldi, G., D. Arosio, A. Hojat, L. Longoni, M. Papini, and L. Zanzi. 2019. “Long-term hydrogeophysical monitoring of the internal conditions of river levees.” Eng. Geol. 259 (Sep): 105139. https://doi.org/10.1016/j.enggeo.2019.05.016.
Vagnon, F., C. Comina, and A. Arato. 2022. “Evaluation of different methods for deriving geotechnical parameters from electric and seismic streamer data.” Eng. Geol. 303 (Jun): 106670. https://doi.org/10.1016/j.enggeo.2022.106670.
Vanorio, T., M. Prasad, and A. Nur. 2003. “Elastic properties of dry clay mineral aggregates, suspensions and sandstones.” Geophys. Int. J. 155 (1): 319–326. https://doi.org/10.1046/j.1365-246X.2003.02046.x.
Weissberg, H. 1963. “Effective diffusion coefficients in porous media.” J. Appl. Phys. 34 (9): 2636–2639. https://doi.org/10.1063/1.1729783.
Weller, A., R. Lewis, T. Canh, M. Möller, and B. Scholz. 2014. “Geotechnical and geophysical long-term monitoring at a levee of red river in Vietnam.” J. Environ. Eng. Geophys. 19 (3): 183–192. https://doi.org/10.2113/JEEG19.3.183.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 12December 2022

History

Received: Mar 5, 2021
Accepted: Jun 24, 2022
Published online: Sep 19, 2022
Published in print: Dec 1, 2022
Discussion open until: Feb 19, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Dept. of Environment, Land and Infrastructure Engineering, Polytechnic of Turin, Turin 10129, Italy (corresponding author). ORCID: https://orcid.org/0000-0003-0539-0557. Email: [email protected]
Professor, Dept. of Earth Sciences, Univ. of Turin, Turin 10124, Italy. ORCID: https://orcid.org/0000-0002-3536-9890. Email: [email protected]
Engineer, Techgea S.r.l., Via Modigliani 26/a, Turin 10137, Italy. ORCID: https://orcid.org/0000-0003-2396-8535. Email: [email protected]
Antonella Chiappone [email protected]
Engineer, GEODES S.r.l., Piazza Arturo Graf 124, Turin 10129, Italy. Email: [email protected]
Professor, Dept. of Structural, Geotechnical and Building Engineering, Polytechnic of Turin, Turin 10129, Italy. ORCID: https://orcid.org/0000-0002-7080-2186. Email: [email protected]
Professor, Dept. of Structural, Geotechnical and Building Engineering, Polytechnic of Turin, Turin 10129, Italy. ORCID: https://orcid.org/0000-0003-4505-5091. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Evaluation of different methods for deriving geotechnical parameters from electric and seismic streamer data, Engineering Geology, 10.1016/j.enggeo.2022.106670, 303, (106670), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share