Technical Papers
Nov 30, 2021

Numerical Simulation of Desiccation Cracking in Clayey Soil Using a Multifield Coupling Discrete-Element Model

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 148, Issue 2

Abstract

Desiccation cracking in clayey soil, which may lead to soil erosion, geotechnical engineering accidents, or even environmental pollution, is a serious problem nowadays. This research proposed a multifield coupling discrete-element model of clayey soil, in which each element represented a certain volume of soil. Meanwhile, the uneven distribution and transfer of moisture were also achieved. By establishing the relationships between water content and element radius, Young’s modulus, and tensile strength, respectively, the model coupled the moisture field with the stress field. Through a discrete-element simulation of desiccation cracking in a thin clay layer, the gradual development of crack network was successfully reproduced, and the proposed model was validated. The uneven moisture distribution in the numerical specimen indicates that cracks can intensify evaporation by increasing the area of soil-air interface. Layer thickness, evaporation intensity, soil-base interaction, and compressive strength are proved to have significant impacts on crack pattern by influencing the equilibrium between desiccation shrinking and cracking. This research provides a new means to study the mechanism of desiccation cracking under multifield coupling effects.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. The DEM simulation software used in this research, i.e., MatDEM, is available online at http://matdem.com.

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (41761134089 and 41977218) and the Fundamental Research Funds for the Central Universities. We are grateful to the anonymous reviewers for many valuable comments that have notably improved the manuscript.

References

Abu-Hejleh, N., and D. Znidarcic. 1995. “Desiccation theory for soft cohesive soils.” J. Geotech. Eng. 121 (6): 493–502. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:6(493).
Albrecht, B. A., and C. H. Benson. 2001. “Effect of desiccation on compacted natural clays.” J. Geotech. Geoenviron. Eng. 127 (1): 67–75. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(67).
Amarasiri, A. L., J. Kodikara, and S. Costa. 2011. “Numerical modelling of desiccation cracking.” Int. J. Numer. Anal. Methods Geomech. 35 (1): 82–96. https://doi.org/10.1002/nag.894.
An, N., C. S. Tang, S. K. Xu, X. P. Gong, B. Shi, and H. I. Inyang. 2018. “Effects of soil characteristics on moisture evaporation.” Eng. Geol. 239 (May): 126–135. https://doi.org/10.1016/j.enggeo.2018.03.028.
Anandarajah, A. 1994. “Discrete-element method for simulating behavior of cohesive soil.” J. Geotech. Geoenviron. Eng. 120 (9): 1593–1613. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1593).
Baker, R. 1981. “Tensile strength, tension cracks, and stability of slopes.” Soils Found. 21 (2): 1–17. https://doi.org/10.3208/sandf1972.21.2_1.
Boynton, S. S., and D. E. Daniel. 1985. “Hydraulic conductivity tests on compacted clay.” J. Geotech. Eng. 111 (4): 465–478. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(465).
Chertkov, V. Y. 2012. “An integrated approach to soil structure, shrinkage, and cracking in samples and layers.” Geoderma 173–174 (Mar): 258–273. https://doi.org/10.1016/j.geoderma.2012.01.010.
Costa, S., J. Kodikara, and B. Shannon. 2013. “Salient factors controlling desiccation cracking of clay in laboratory experiments.” Géotechnique 63 (1): 18–29. https://doi.org/10.1680/geot.9.P.105.
Cui, Y. J., A. N. Ta, S. Hemmati, A. M. Tang, and B. Gatmiri. 2013. “Experimental and numerical investigation of soil-atmosphere interaction.” Eng. Geol. 165 (Oct): 20–28. https://doi.org/10.1016/j.enggeo.2012.03.018.
Cui, Y. J., C. S. Tang, A. M. Tang, and A. N. Ta. 2014. “Investigation of soil desiccation cracking using an environmental chamber.” Riv. Ital. Geotech. 48 (1): 9–20.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Deng, G., and Z. J. Shen. 2006. “Numerical simulation of crack formation process in clays during drying and wetting.” Geomech. Geoeng. 1 (1): 27–41. https://doi.org/10.1080/17486020500518860.
Ellithy, G. S., and T. D. Stark. 2020. “Case study: Unsaturated embankment failure on soft soils.” J. Geotech. Geoenviron. Eng. 146 (12): 05020011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002382.
El Youssoufi, M. S., J. Y. Delenne, and F. Radjai. 2005. “Self-stresses and crack formation by particle swelling in cohesive granular media.” Phys. Rev. E 71 (5): 051307. https://doi.org/10.1103/PhysRevE.71.051307.
Fredlund, D. G. 2006. “Unsaturated soil mechanics in engineering practice.” J. Geotech. Geoenviron. Eng. 132 (3): 286–321. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(286).
Ghazizade, M. J., and E. Safari. 2017. “Analysis of desiccation crack depth in three compacted clay liners exposed to annual cycle of atmospheric conditions with and without a geotextile cover.” J. Geotech. Geoenviron. Eng. 143 (3): 06016024. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001607.
Ghosh, P., C. H. Juang, and J. E. Clark. 1993. “A fuzzy set analysis for predicting performance of clay liners.” In Proc., Int. Symp. on Uncertainty Modeling and Analysis. New York: IEEE.
Griffiths, F. J., and R. C. Joshi. 1989. “Change in pore size distribution due to consolidation of clays.” Géotechnique 39 (1): 159–167. https://doi.org/10.1680/geot.1989.39.1.159.
Gui, Y. L., Z. Y. Zhao, J. Kodikara, H. H. Bui, and S. Q. Yang. 2016. “Numerical modelling of laboratory soil desiccation cracking using UDEC with a mix-mode cohesive fracture model.” Eng. Geol. 202 (Mar): 14–23. https://doi.org/10.1016/j.enggeo.2015.12.028.
Hoor, A., and R. K. Rowe. 2013. “Potential for desiccation of geosynthetic clay liners used in barrier systems.” J. Geotech. Geoenviron. Eng. 139 (10): 1648–1664. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000899.
Jiang, M. J., S. Leroueil, and J. M. Konrad. 2004. “Insight into shear strength functions of unsaturated granulates by DEM analyses.” Comput. Geotech. 31 (6): 473–489. https://doi.org/10.1016/j.compgeo.2004.07.001.
Jones, G., M. Zielinski, and P. Sentenac. 2012. “Mapping desiccation fissures using 3-D electrical resistivity tomography.” J. Appl. Geophys. 84 (Sep): 39–51. https://doi.org/10.1016/j.jappgeo.2012.06.002.
Konrad, J. M., and R. Ayad. 1997a. “Desiccation of a sensitive clay: Field experimental observations.” Can. Geotech. J. 34 (6): 929–942. https://doi.org/10.1139/t97-063.
Konrad, J. M., and R. Ayad. 1997b. “An idealized framework for the analysis of cohesive soils undergoing desiccation.” Can. Geotech. J. 34 (4): 477–488. https://doi.org/10.1139/t97-015.
Lakshmikantha, M. R., P. Prat, and A. Ledesma. 2012. “Experimental evidence of size effect in soil cracking.” Can. Geotech. J. 49 (3): 264–284. https://doi.org/10.1139/t11-102.
Levatti, H. U., P. Prat, A. Ledesma, A. Cuadrado, and J. A. Cordero Arias. 2017. “Experimental analysis of 3D cracking in drying soils using Ground Penetrating Radar.” Geotech. Test. J. 40 (2): 1–23. https://doi.org/10.1520/GTJ20160066.
Lin, Z. Y., Y. S. Wang, C. S. Tang, Q. Cheng, H. Zeng, C. Liu, and B. Shi. 2021. “Discrete element modelling of desiccation cracking in thin clay layer under different basal boundary conditions.” Comput. Geotech. 130 (Feb): 103931. https://doi.org/10.1016/j.compgeo.2020.103931.
Liu, C. 2021. Matrix discrete element analysis of geological and geotechnical engineering. Berlin: Springer.
Liu, C., D. D. Pollard, K. Gu, and B. Shi. 2015. “Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method.” J. Geophys. Res. Solid Earth 120 (12): 8153–8168. https://doi.org/10.1002/2015JB012374.
Liu, C., D. D. Pollard, and B. Shi. 2013. “Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals.” J. Geophys. Res. Solid Earth 118 (1): 71–82. https://doi.org/10.1029/2012JB009615.
Liu, C., Q. Xu, B. Shi, S. Deng, and H. Zhu. 2017. “Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks.” Comput. Geosci. 103 (Jun): 12–20. https://doi.org/10.1016/j.cageo.2017.03.003.
Lu, N., and W. J. Likos. 2004. Unsaturated soil mechanics. Hoboken, NJ: Wiley.
Luo, H., A. Xing, K. Jin, S. Xu, and Y. Zhuang. 2021. “Discrete element modeling of the Nayong rock avalanche, Guizhou, China constrained by dynamic parameters from seismic signal inversion.” Rock Mech. Rock Eng. 54 (4): 1629–1645. https://doi.org/10.1007/s00603-021-02363-9.
Miller, C. 1988. “Field investigation of clay liner movement.” Hazards Waste 5 (3): 231–238. https://doi.org/10.1089/hwm.1988.5.231.
Miller, C., H. Mi, and N. Yesiller. 1998. “Experimental analysis of desiccation crack propagation in clay liners.” J. Am. Water Resour. Assoc. 34 (3): 677–686. https://doi.org/10.1111/j.1752-1688.1998.tb00964.x.
Morris, P. H., J. Graham, and D. J. Williams. 1992. “Cracking in drying soils.” Can. Geotech. J. 29 (2): 263–277. https://doi.org/10.1139/t92-030.
Nahlawi, H., and J. Kodikara. 2006. “Laboratory experiments on desiccation cracking of thin soil layers.” Geotech. Geol. Eng. 24 (6): 1641–1664. https://doi.org/10.1007/s10706-005-4894-4.
Peron, H., J. Y. Delenne, L. Laloui, and M. S. El Youssoufi. 2009. “Discrete element modelling of drying shrinkage and cracking of soils.” Comput. Geotech. 36 (1–2): 61–69. https://doi.org/10.1016/j.compgeo.2008.04.002.
Perrier, E., C. Mullon, M. Rieu, and G. de Marsily. 1995. “Computer construction of fractal soil structures: Simulation of their hydraulic and shrinkage properties.” Water Resour. Res. 31 (12): 2927–2943. https://doi.org/10.1029/95WR02214.
Qin, Y., C. Liu, X. Zhang, X. Wang, B. Shi, Y. Wang, and S. Deng. 2021. “A three-dimensional discrete element model of triaxial tests based on a new flexible membrane boundary.” Sci. Rep. 11 (1): 4753. https://doi.org/10.1038/s41598-021-84224-7.
Ramana, K. V. 1993. “Expansive soils: Problems and practice in foundation and pavement engineering.” Eng. Geol. 35 (1–2): 136–138. https://doi.org/10.1016/0013-7952(93)90076-O.
Rodríguez, R., M. Sánchez, A. Ledesma, and A. Lloret. 2007. “Experimental and numerical analysis of desiccation of a mining waste.” Can. Geotech. J. 44 (6): 644–658. https://doi.org/10.1139/t07-016.
Sánchez, M., A. Atique, S. Kim, E. Romero, and M. Zielinski. 2013. “Exploring desiccation cracks in soils using a 2D profile laser device.” Acta Geotech. 8 (6): 583–596. https://doi.org/10.1007/s11440-013-0272-1.
Sánchez, M., O. L. Manzoli, and L. J. N. Guimarães. 2014. “Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique.” Comput. Geotech. 62 (Oct): 27–39. https://doi.org/10.1016/j.compgeo.2014.06.009.
Scaringi, G., X. Fan, Q. Xu, C. Liu, C. Ouyang, G. Domènech, F. Yang, and L. Dai. 2018. “Some considerations on the use of numerical methods to simulate past landslides and possible new failures: The case of the recent Xinmo landslide (Sichuan, China).” Landslides 15 (7): 1359–1375. https://doi.org/10.1007/s10346-018-0953-9.
Scholtès, L., B. Chareyre, F. Nicot, and F. Darve. 2009. “Micromechanics of granular materials with capillary effects.” Int. J. Eng. Sci. 47 (1): 64–75. https://doi.org/10.1016/j.ijengsci.2008.07.002.
Sherard, J. L. 1973. Embankment dam cracking. Hoboken, NJ: Wiley.
Shi, B., Y. Murakami, and Z. Wu. 1998. “Orientation of aggregates of fine-grained soil: Quantification and application.” Eng. Geol. 50 (1–2): 59–70. https://doi.org/10.1016/S0013-7952(97)00082-3.
Sima, J., M. Jiang, and C. Zhou. 2014. “Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling.” Comput. Geotech. 56 (Mar): 168–180. https://doi.org/10.1016/j.compgeo.2013.12.003.
Southen, J. M., and R. K. Rowe. 2005. “Laboratory investigation of geosynthetic clay liner desiccation in a composite liner subjected to thermal gradients.” J. Geotech. Geoenviron. Eng. 131 (7): 925–935. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(925).
Stirk, G. B. 1954. “Some aspects of soil shrinkage and the effect of cracking upon water entry into soil.” Aust. J. Agric. Res. 5 (2): 279–290. https://doi.org/10.1071/AR9540279.
Stolte, J., C. J. Ritsema, and A. P. J. de Roo. 1997. “Effects of crust and cracks on simulated catchment discharge and soil loss.” J. Hydrol. 195 (1–4): 279–290. https://doi.org/10.1016/S0022-1694(96)03249-0.
Tang, C. S., Y. J. Cui, B. Shi, A. M. Tang, and C. Liu. 2011a. “Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles.” Geoderma 166 (1): 111–118. https://doi.org/10.1016/j.geoderma.2011.07.018.
Tang, C. S., Y. J. Cui, A. M. Tang, and B. Shi. 2010. “Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils.” Eng. Geol. 114 (3–4): 261–266. https://doi.org/10.1016/j.enggeo.2010.05.003.
Tang, C. S., B. Shi, and C. Liu. 2012. “Study on desiccation cracking behaviour of expansive soil.” [In Chinese.] J. Eng. Geol. 20 (5): 663–673.
Tang, C. S., B. Shi, C. Liu, W. B. Suo, and L. Gao. 2011b. “Experimental characterization of shrinkage and desiccation cracking in thin clay layer.” Appl. Clay Sci. 52 (1–2): 69–77. https://doi.org/10.1016/j.clay.2011.01.032.
Tang, C. S., B. Shi, C. Liu, L. Zhao, and B. Wang. 2008. “Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils.” Eng. Geol. 101 (3–4): 204–217. https://doi.org/10.1016/j.enggeo.2008.05.005.
Totsche, K. U., et al. 2018. “Microaggregates in soils.” J. Plant Nutr. Soil Sci. 181 (1): 104–136. https://doi.org/10.1002/jpln.201600451.
Trabelsi, H., M. Jamei, H. Zenzri, and S. Olivella. 2012. “Crack patterns in clayey soils: Experiments and modeling.” Int. J. Numer. Anal. Methods Geomech. 36 (11): 1410–1433. https://doi.org/10.1002/nag.1060.
Tran, K. M., H. H. Bui, and G. D. Nguyen. 2021. “DEM modelling of unsaturated seepage flows through porous media.” Comput. Part. Mech. 2021 (Mar): 1–18. https://doi.org/10.1007/s40571-021-00398-x.
Velde, B. 1999. “Structure of surface cracks in soil and muds.” Geoderma 93 (1–2): 101–124. https://doi.org/10.1016/S0016-7061(99)00047-6.
Vogel, H. J., H. Hoffmann, A. Leopold, and K. Roth. 2005a. “Studies of crack dynamics in clay soil: II. A physically based model for crack formation.” Geoderma 125 (3–4): 213–223. https://doi.org/10.1016/j.geoderma.2004.07.008.
Vogel, H. J., H. Hoffmann, and K. Roth. 2005b. “Studies of crack dynamics in clay soil: I. Experimental methods, results, and morphological quantification.” Geoderma 125 (3–4): 203–211. https://doi.org/10.1016/j.geoderma.2004.07.009.
Wang, D. Y., C. S. Tang, B. Shi, Y. L. Wang, Z. P. Song, and J. H. Wu. 2014. “Experimental study on soil desiccation cracking monitoring using PPP-BOTDA sensing technique.” In Proc., 5th Int. Forum on Opto-electronic Sensor-based Monitoring in Geo-engineering (5th OSMG-2014). Nanjing, China: Nanjing Univ.
Wang, J. P., X. Li, and H. S. Yu. 2017. “A micro–macro investigation of the capillary strengthening effect in wet granular materials.” Acta Geotech. 13 (3): 513–533. https://doi.org/10.1007/s11440-017-0619-0.
Xue, Y., J. Zhou, C. Liu, M. Shadabfar, and J. Zhang. 2021. “Rock fragmentation induced by a TBM disc-cutter considering the effects of joints: A numerical simulation by DEM.” Comput. Geotech. 136 (Aug): 104230. https://doi.org/10.1016/j.compgeo.2021.104230.
Yoshida, S., and K. Adachi. 2004. “Numerical analysis of crack generation in saturated deformable soil under row-planted vegetation.” Geoderma 120 (1–2): 63–74. https://doi.org/10.1016/j.geoderma.2003.08.009.
Zangl, F., and W. Likos. 2016. “Alternative methods for wet-dry cycling of geosynthetic clay liners.” J. Geotech. Geoenviron. Eng. 142 (11): 04016063. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001508.
Zeng, H., C. S. Tang, Q. Cheng, H. I. Inyang, D. Z. Rong, L. Lin, and B. Shi. 2019. “Coupling effects of interfacial friction and layer thickness on soil desiccation cracking behavior.” Eng. Geol. 260 (Oct): 105220. https://doi.org/10.1016/j.enggeo.2019.105220.
Zhang, D. M., L. X. Ma, J. Zhang, P. Y. Hicher, and C. H. Juang. 2015. “Ground and tunnel responses induced by partial leakage in saturated clay with anisotropic permeability.” Eng. Geol. 189 (Apr): 104–115. https://doi.org/10.1016/j.enggeo.2015.02.005.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 2February 2022

History

Received: Nov 3, 2020
Accepted: Oct 29, 2021
Published online: Nov 30, 2021
Published in print: Feb 1, 2022
Discussion open until: Apr 30, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Tian-Cheng Le [email protected]
Graduate Student, School of Earth Science and Engineering, Nanjing Univ., Nanjing, Jiangsu 210023, China. Email: [email protected]
Associate Professor, School of Earth Science and Engineering, Nanjing Univ., Nanjing, Jiangsu 210023, China (corresponding author). Email: [email protected]
Professor, School of Earth Science and Engineering, Nanjing Univ., Nanjing, Jiangsu 210023, China. ORCID: https://orcid.org/0000-0002-6419-6116. Email: [email protected]
Xiao-Yu Zhang [email protected]
Graduate Student, School of Earth Science and Engineering, Nanjing Univ., Nanjing, Jiangsu 210023, China. Email: [email protected]
Professor, School of Earth Science and Engineering, Nanjing Univ., Nanjing, Jiangsu 210023, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Mechanism, influencing factors and research methods for soil desiccation cracking: a review, European Journal of Environmental and Civil Engineering, 10.1080/19648189.2022.2130437, (1-25), (2023).
  • Healing behaviour of desiccation cracks in a clayey soil subjected to different wetting rates, Engineering Geology, 10.1016/j.enggeo.2022.106973, 313, (106973), (2023).
  • Insight into the mechanical coupling behavior of loose sediment and embedded fiber-optic cable using discrete element method, Engineering Geology, 10.1016/j.enggeo.2022.106948, 312, (106948), (2023).
  • Stability Analysis of Loess High Slope under Dynamic Compaction Based on Matrix Discrete Element Method, Advances in Civil Engineering, 10.1155/2022/9089652, 2022, (1-13), (2022).
  • Effect of Confining Pressure on Mechanical and Energy Conversion Properties of Gas-Containing Coal under Loads, Geofluids, 10.1155/2022/3074156, 2022, (1-23), (2022).
  • Novel discrete element method algorithm for modeling real particle shapes, Marine Georesources & Geotechnology, 10.1080/1064119X.2022.2140317, (1-12), (2022).
  • Investigating Mechanical Behaviors of Rocks Under Freeze–Thaw Cycles Using Discrete Element Method, Rock Mechanics and Rock Engineering, 10.1007/s00603-022-03027-y, 55, 12, (7517-7534), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share