Abstract

Heat transfer from/to energy piles can cause plastic contraction of soft clay with a low overconsolidation ratio (OCR) during heating and cooling. This can lead to thermally induced excess pore water pressure and changes in the lateral stress acting on a pile. These thermally induced phenomena cause additional plastic settlement of the soil and pile. Irreversible settlement may cause serviceability or ultimate limit state problems for floating energy piles whose capacity is mainly derived from shaft resistance. Due to intended operational needs or by accident, cyclic nonsymmetrical thermal loads may be applied to floating energy pile groups and piled rafts. The thermomechanical interaction among nonsymmetrical loaded piles is not well understood. In this study, a series of cyclic nonsymmetrical thermally loaded centrifuge model tests were conducted on floating pile groups and piled rafts in soft kaolin clay with an OCR of 1.7 at the pile toe. The performance of floating 2×2 elevated energy pile groups and energy piled rafts was investigated. Three piles in each group were subjected to 15 cycles of ±14°C in temperature change. The thermally induced irreversible settlement and tilting of the elevated pile groups exceeded serviceability and ultimate criteria. The piled rafts similarly settled but to a smaller extent than the elevated group. Their tilting, however, did not exceed the serviceability criterion. It is recommended that energy piled rafts be used in soft clay instead of elevated energy piles.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors would like to acknowledge the financial support provided by research Grant No. GRF 16207417 from the Research Grants Council (RGC) of The Hong Kong Special Administrative Region (HKSAR).

References

AASHTO. 1992. AASHTO standard specifications for highway bridges. Washington, DC: AASHTO.
Abuel-Naga, H. M., D. T. Bergado, and A. Bouazza. 2007a. “Thermally induced volume change and excess pore water pressure of soft Bangkok clay.” Eng. Geol. 89 (1–2): 144–154. https://doi.org/10.1016/j.enggeo.2006.10.002.
Abuel-Naga, H. M., D. T. Bergado, A. Bouazza, and G. V. Ramana. 2007b. “Volume change behaviour of saturated clays under drained heating conditions: Experimental results and constitutive modeling.” Can. Geotech. J. 44 (8): 942–956. https://doi.org/10.1139/t07-031.
Adinolfi, M., R. M. S. Maiorano, A. Mauro, N. Massarotti, and S. Aversa. 2018. “On the influence of thermal cycles on the yearly performance of an energy pile.” Geomech. Energy Environ. 16 (Dec): 32–44. https://doi.org/10.1016/j.gete.2018.03.004.
Alnuaim, A. M., M. H. El Naggar, and H. El Naggar. 2015. “Performance of micropiled raft in clay subjected to vertical concentrated load: Centrifuge modeling.” Can. Geotech. J. 52 (12): 2017–2029. https://doi.org/10.1139/cgj-2014-0448.
Amatya, B. L., K. Soga, P. J. Bourne-Webb, T. Amis, and L. Laloui. 2012. “Thermo-mechanical behaviour of energy piles.” Géotechnique 62 (6): 503–519. https://doi.org/10.1680/geot.10.P.116.
Asaoka, A. 1978. “Observational procedure of settlement prediction.” Soils Found. 18 (4): 87–101. https://doi.org/10.3208/sandf1972.18.4_87.
Bergström, A., S. Javed, and J. Dijkstra. 2021. “Field test of a floating thermal pile in sensitive clay.” Géotechnique 71 (4): 334–345. https://doi.org/10.1680/jgeot.19.P.094.
Boulon, M., and P. Foray. 1986. “Physical and numerical simulation of lateral shaft friction along offshore piles in sand.” In Proc., 3rd Int. Conf. on Numerical Methods in Offshore Piling, 127–147. Paris: Editions Technip.
Bourne-Webb, P. J., B. Amatya, K. Soga, T. Amis, C. Davidson, and P. Payne. 2009. “Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles.” Géotechnique 59 (3): 237–248. https://doi.org/10.1680/geot.2009.59.3.237.
Campanella, R. G., and J. K. Mitchell. 1968. “Influence of temperature variations on soil behavior.” J. Soil Mech. Found. Div. 94 (3): 709–734. https://doi.org/10.1061/JSFEAQ.0001136.
Cekerevac, C., and L. Laloui. 2004. “Experimental study of thermal effects on the mechanical behaviour of a clay.” Int. J. Numer. Anal. Methods Geomech. 28 (3): 209–228. https://doi.org/10.1002/nag.332.
CEN (European Committee for Standardization). 2004. Eurocode 7: Geotechnical design. Part 1: General rules. EN 1997-1. Brussels, Belgium: CEN.
Delage, P., N. Sultan, and Y. J. Cui. 2000. “On the thermal consolidation of Boom clay.” Can. Geotech. J. 37 (2): 343–354. https://doi.org/10.1139/t99-105.
Di Donna, A., A. Ferrari, and L. Laloui. 2016. “Experimental investigations of the soil–concrete interface: Physical mechanisms, cyclic mobilisation, and behaviour at different temperatures.” Can. Geotech. J. 53 (4): 659–672. https://doi.org/10.1139/cgj-2015-0294.
Di Donna, A., and L. Laloui. 2015. “Response of soil subjected to thermal cyclic loading: Experimental and constitutive study.” Eng. Geol. 190 (May): 65–76. https://doi.org/10.1016/j.enggeo.2015.03.003.
Faizal, M., A. Bouazza, C. Haberfield, and J. S. McCartney. 2018. “Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes.” J. Geotech. Geoenviron. Eng. 144 (10): 04018072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001952.
Fang, J., G. Kong, Y. Meng, L. Wang, and Q. Yang. 2020. “Thermomechanical behavior of energy piles and interactions within energy pile–raft foundations.” J. Geotech. Geoenviron. Eng. 146 (9): 04020079. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002333.
Gawecka, K. A., D. M. Taborda, D. M. Potts, W. Cui, L. Zdravković, and M. S. Haji Kasri. 2017. “Numerical modelling of thermo-active piles in London Clay.” Proc. Inst. Civ. Eng. Geotech. Eng. 170 (3): 201–219. https://doi.org/10.1680/jgeen.16.00096.
Ghaaowd, I., J. McCartney, X. Huang, F. Saboya, and S. Tibana. 2018. “Issues with centrifuge modelling of energy piles in soft clays.” In Proc., 9th Int. Conf. on Physical Modelling in Geotechnics. Boca Raton, FL: CRC Press.
Goode Iii, J. C., and J. S. McCartney. 2015. “Centrifuge modeling of end-restraint effects in energy foundations.” J. Geotech. Geoenviron. Eng. 141 (8): 04015034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001333.
Hamada, Y., H. Saitoh, M. Nakamura, H. Kubota, and K. Ochifuji. 2007. “Field performance of an energy pile system for space heating.” Energy Build. 39 (5): 517–524. https://doi.org/10.1016/j.enbuild.2006.09.006.
Hong, Y., B. He, L. Z. Wang, Z. Wang, C. W. W. Ng, and D. Mašín. 2017. “Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: Centrifuge tests and numerical modeling.” Can. Geotech. J. 54 (6): 806–824. https://doi.org/10.1139/cgj-2016-0356.
Horikoshi, K., and M. F. Randolph. 1997. “On the definition of raft—Soil stiffness ratio for rectangular rafts.” Géotechnique 47 (5): 1055–1061. https://doi.org/10.1680/geot.1997.47.5.1055.
Jeong, S., H. Lim, J. K. Lee, and J. Kim. 2014. “Thermally induced mechanical response of energy piles in axially loaded pile groups.” Appl. Therm. Eng. 71 (1): 608–615. https://doi.org/10.1016/j.applthermaleng.2014.07.007.
Laloui, L., M. Nuth, and L. Vulliet. 2006. “Experimental and numerical investigations of the behaviour of a heat exchanger pile.” Int. J. Numer. Anal. Methods Geomech. 30 (8): 763–781. https://doi.org/10.1002/nag.499.
Mimouni, T., and L. Laloui. 2015. “Behaviour of a group of energy piles.” Can. Geotech. J. 52 (12): 1913–1929. https://doi.org/10.1139/cgj-2014-0403.
Ng, C. W. W. 2014. “The 6th Zeng Guo-Xi lecture: The state-of-the-art centrifuge modelling of geotechnical problems at HKUST.” J. Zhejiang Univ. Sci. A 15 (1): 1–21. https://doi.org/10.1631/jzus.A1300217.
Ng, C. W. W., A. Farivar, S. M. M. H. Gomaa, M. Shakeel, and F. Jafarzadeh. 2021. “Performance of elevated energy pile groups with different pile spacing in clay subjected to non-symmetrical thermal cycles.” Renewable Energy 172 (Jul): 998–1012. https://doi.org/10.1016/j.renene.2021.03.108.
Ng, C. W. W., A. Gunawan, C. Shi, Q. J. Ma, and H. L. Liu. 2016a. “Centrifuge modelling of displacement and replacement energy piles constructed in saturated sand: A comparative study.” Géotech. Lett. 6 (1): 34–38. https://doi.org/10.1680/jgele.15.00119.
Ng, C. W. W., and Q. J. Ma. 2019. “Energy pile group subjected to non-symmetrical cyclic thermal loading in centrifuge.” Géotech. Lett. 9 (3): 173–177. https://doi.org/10.1680/jgele.18.00161.
Ng, C. W. W., Q. J. Ma, and A. Gunawan. 2016b. “Horizontal stress change of energy piles subjected to thermal cycles.” Comput. Geotech. 78 (Sep): 54–61. https://doi.org/10.1016/j.compgeo.2016.05.003.
Ng, C. W. W., H. G. Poulos, V. S. Chan, S. S. Lam, and G. C. Chan. 2008. “Effects of tip location and shielding on piles in consolidating ground.” J. Geotech. Geoenviron. Eng. 134 (9): 1245–1260. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1245).
Ng, C. W. W., C. Shi, A. Gunawan, and L. Laloui. 2014. “Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay.” Géotech. Lett. 4 (4): 310–316. https://doi.org/10.1680/geolett.14.00063.
Ng, C. W. W., C. Shi, A. Gunawan, L. Laloui, and H. L. Liu. 2015. “Centrifuge modelling of heating effects on energy pile performance in saturated sand.” Can. Geotech. J. 52 (8): 1045–1057. https://doi.org/10.1139/cgj-2014-0301.
Ng, C. W. W., S. H. Wang, and C. Zhou. 2016c. “Volume change behaviour of saturated sand under thermal cycles.” Géotech. Lett. 6 (2): 124–131. https://doi.org/10.1680/jgele.15.00148.
Ng, C. W. W., T. L. Y. Yau, J. H. M. Li, and W. H. Tang. 2001. “New failure load criterion for large diameter bored piles in weathered geomaterials.” J. Geotech. Geoenviron. Eng. 127 (6): 488–498. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:6(488).
Ng, C. W. W., C. Zhang, A. Farivar, and S. M. M. H. Gomaa. 2020. “Scaling effects on the centrifuge modelling of energy piles in saturated sand.” Géotech. Lett. 10 (1): 57–62. https://doi.org/10.1680/jgele.19.00051.
Olgun, C. G., T. Y. Ozudogru, and C. F. Arson. 2014. “Thermo-mechanical radial expansion of heat exchanger piles and possible effects on contact pressures at pile–soil interface.” Géotech. Lett. 4 (3): 170–178. https://doi.org/10.1680/geolett.14.00018.
Poulos, H. G. 2001. “Piled raft foundations: Design and applications.” Géotechnique 51 (2): 95–113. https://doi.org/10.1680/geot.51.2.95.40292.
Rotta Loria, A. F., and L. Laloui. 2017. “Thermally induced group effects among energy piles.” Géotechnique 67 (5): 374–393. https://doi.org/10.1680/jgeot.16.P.039.
Rotta Loria, A. F., and L. Laloui. 2018a. “Group action effects caused by various operating energy piles.” Géotechnique 68 (9): 834–841. https://doi.org/10.1680/jgeot.17.P.213.
Rotta Loria, A. F., and L. Laloui. 2018b. “Thermo-mechanical schemes for energy piles.” In Proc., Int. Symp. on Energy Geotechnics, 218–225. Cham, Switzerland: Springer.
Saggu, R., and T. Chakraborty. 2016. “Thermomechanical response of geothermal energy pile groups in sand.” Int. J. Geomech. 16 (4): 04015100. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000567.
Salciarini, D., F. Ronchi, and C. Tamagnini. 2017. “Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: A parametric study.” Acta Geotech. 12 (4): 703–728. https://doi.org/10.1007/s11440-017-0551-3.
Schofield, A. N. 1980. “Cambridge geotechnical centrifuge operations.” Géotechnique 30 (3): 227–268. https://doi.org/10.1680/geot.1980.30.3.227.
Shi, J., C. Ding, C. W. W. Ng, H. Lu, and L. Chen. 2020. “Effects of overconsolidation ratio on tunnel responses due to overlying basement excavation in clay.” Tunnelling Underground Space Technol. 97 (Mar): 103247. https://doi.org/10.1016/j.tust.2019.103247.
Stewart, M. A., and J. S. McCartney. 2014. “Centrifuge modelling of soil-structure interaction in energy foundations.” J. Geotech. Geoenviron. Eng. 140 (4): 04013044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001061.
Sutman, M., T. Brettmann, and C. G. Olgun. 2019. “Full-scale in-situ tests on energy piles: Head and base-restraining effects on the structural behaviour of three energy piles.” Geomech. Energy Environ. 18 (Jun): 56–68. https://doi.org/10.1016/j.gete.2018.08.002.
Taylor, R. N. 2005. Geotechnical centrifuge technology. London: Blakie.
Wang, C. L., H. L. Liu, G. Q. Kong, C. W. Ng, and D. Wu. 2016. “Model tests of energy piles with and without a vertical load.” Environ. Geotech. 3 (4): 203–213. https://doi.org/10.1680/jenge.15.00020.
Wood, C. J., H. Liu, and S. B. Riffat. 2009. “Use of energy piles in a residential building, and effects on ground temperature and heat pump efficiency.” Géotechnique 59 (3): 287–290. https://doi.org/10.1680/geot.2009.59.3.287.
Wu, D., H. Liu, G. Kong, and C. Li. 2019. “Thermo-mechanical behavior of energy pile under different climatic conditions.” Acta Geotech. 14 (5): 1495–1508. https://doi.org/10.1007/s11440-018-0731-9.
Wu, D., H. Liu, G. Kong, and C. W. Ng. 2020. “Interactions of an energy pile with several traditional piles in a row.” J. Geotech. Geoenviron. Eng. 146 (4): 06020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002224.
Yavari, N., A. M. Tang, J. M. Pereira, and G. Hassen. 2016. “Mechanical behaviour of a small-scale energy pile in saturated clay.” Géotechnique 66 (11): 878–887. https://doi.org/10.1680/jgeot.15.T.026.
Yazdani, S., S. Helwany, and G. Olgun. 2019. “Investigation of thermal loading effects on shaft resistance of energy pile using laboratory-scale model.” J. Geotech. Geoenviron. Eng. 145 (9): 04019043. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002088.
Zeinali, S. M., and S. L. Abdelaziz. 2021. “Thermal consolidation theory.” J. Geotech. Geoenviron. Eng. 147 (1): 04020147. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002423.
Zhou, C., K. Y. Fong, and C. W. W. Ng. 2017. “A new bounding surface model for thermal cyclic behavior.” Int. J. Numer. Anal. Methods Geomech. 41 (16): 1656–1666. https://doi.org/10.1002/nag.2688.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 12December 2021

History

Received: Jul 27, 2020
Accepted: Aug 2, 2021
Published online: Sep 23, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 23, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Charles W. W. Ng, F.ASCE [email protected]
CLP Holdings Professor of Sustainability, Chair Professor, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR. Email: [email protected]
Postdoctoral Scholar, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR; Researcher, Dept. of Civil Engineering, Sharif Univ. of Technology, Tehran, Iran (corresponding author). ORCID: https://orcid.org/0000-0003-3129-5860. Email: [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR. ORCID: https://orcid.org/0000-0001-6240-4252. Email: [email protected]
Fardin Jafarzadeh [email protected]
Associate Professor, Dept. of Civil Engineering, Sharif Univ. of Technology, Tehran, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Thermomechanical Response of Field-Scale Energy Wall under Different Heating Operations, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12066, 150, 3, (2024).
  • Cyclically thermally-activated pile under combined axial/horizontal loads in clay, Géotechnique Letters, 10.1680/jgele.22.00079, 13, 1, (1-7), (2023).
  • Thermal Triaxial Tests to Evaluate Improvement of Soft Marine Clay through Thermal Consolidation, Geotechnical Testing Journal, 10.1520/GTJ20220154, 46, 3, (20220154), (2023).
  • Laboratory investigations on the thermo-mechanical behaviour of an energy pile group operated in heat release mode, Geothermics, 10.1016/j.geothermics.2022.102645, 109, (102645), (2023).
  • Influence of pile head restraint on the performance of floating elevated energy pile groups in soft clay, Computers and Geotechnics, 10.1016/j.compgeo.2022.105141, 154, (105141), (2023).
  • An elasto-plastic numerical analysis of THM responses of floating energy pile foundations subjected to asymmetrical thermal cycles, Géotechnique, 10.1680/jgeot.22.00055, (1-20), (2022).
  • Group Performance of Energy Piles under Cyclic and Variable Thermal Loading, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/(ASCE)GT.1943-5606.0002840, 148, 8, (2022).
  • Energy Piles, Applications and Research Aspects: An Investigation on the Behavior of a Single Energy Pile in Dry Condition, Current Trends in Geotechnical Engineering and Construction, 10.1007/978-981-19-7358-1_23, (261-277), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share