Technical Papers
Sep 28, 2021

Translational Inertial Effects and Scaling Considerations for Coarse Granular Flows Impacting Landslide-Resisting Barriers

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 12

Abstract

Coarse grains accumulate at granular flow fronts and must be considered when studying granular flows impacting barriers. Experimental studies often use instrumented barriers comprising a load transducer and load-bearing plate. However, it is not clear how to scale the mass of these composite barriers relative to coarse grains such that forces induced are properly captured by the load transducer. This study considers the impact force from grains on instrumented barriers using both a physical flume and a discrete element method (DEM) model. Results reveal two main scaling considerations for granular flows impacting load-measuring systems: (1) the design of the load-measuring system, and (2) the model size. Considerations relating to the design of the load-measuring system include (1) the relative mass of the grains and the load-measuring system; (2) the spring element stiffness of the load-measuring system; and (3) the grain impact velocity. These are captured using a newly proposed dimensionless number. Additionally, discrete impacts appear to reduce in importance as the sizes of the flow and channel are increased, relative to the final static load due to the flow piling up, within the framework of Hertzian impact mechanics. This implies that small-scale DEM simulations adopting low elastic moduli (reducing discrete impact loads) may unintentionally correctly represent larger-scale impact dynamics.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. This includes the load cell data and the code used for the DEM simulations, as well as the MATLAB version 2019b code used for data extraction and graph plotting.

Acknowledgments

The authors are grateful for the generous financial sponsorship from the National Natural Science Foundation of China (51709052), as well as the Research Grants Council of Hong Kong (General Research Fund Grant Nos. 16212618, 16209717, 16210219, T22-603/15N, and AoE/E-603/18) and the University of Hong Kong start-up fund for new staff from the Department of Civil Engineering and the Faculty of Engineering. Furthermore, some of the work was performed while the first author was working in France under funding graciously provided as part of the MOPGA 2021–22 scheme (MOPGA-976501H), from the Agence Nationale de la Recherche (France). The authors would also like to thank Mr. Doug Ho for a useful preliminary investigation conducted on DEM contact models for open-channel flows. The authors are also grateful for the detailed comments and suggestions given by two anonymous reviewers, whose input helped to greatly improve the manuscript.

References

Albaba, A., S. Lambert, and T. Faug. 2018. “Dry granular avalanche force on a rigid wall: analytic shock solution versus discrete element simulations.” Phys. Rev. E 97 (5): 052903. https://doi.org/10.1103/PhysRevE.97.052903.
Albaba, A., S. Lambert, F. Nicot, and B. Chareyre. 2015. “Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modelling.” Granular Matter 17 (5): 603–616. https://doi.org/10.1007/s10035-015-0579-8.
An, B., and D. D. Tannant. 2007. “Discrete element method contact model for dynamic simulation of inelastic rock impact.” Comput. Geosci. 33 (4): 513–521. https://doi.org/10.1016/j.cageo.2006.07.006.
Antypov, D., and J. A. Elliott. 2011. “On an analytical solution for the damped Hertzian spring.” Europhys. Lett. 94 (5): 50004. https://doi.org/10.1209/0295-5075/94/50004.
Armanini, A. 2015. “Closure relations for mobile bed debris flows in a wide range of slopes and concentrations.” Adv. Water Resour. 81 (Jul): 75–83. https://doi.org/10.1016/j.advwatres.2014.11.003.
Armanini, A., M. Larcher, E. Nucci, and M. Dumbser. 2014. “Submerged granular channel flows driven by gravity.” Adv. Water Resour. 63 (Jan): 1–10. https://doi.org/10.1016/j.advwatres.2013.10.007.
Armanini, A., M. Larcher, and M. Odorizzi. 2011. “Dynamic impact of debris flow front against a vertical wall.” In Proc., 5th Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment 2011, 1041–1049. Rome: Casa Editrice Università La Sapienza.
Ashwood, W., and O. Hungr. 2016. “Estimating total resisting force in flexible barrier impacted by a granular avalanche using physical and numerical modelling.” Can. Geotech. J. 53 (10): 1700–1717. https://doi.org/10.1139/cgj-2015-0481.
Baselt, I., G. Q. de Oliveira, J.-T. Fischer, and S. P. Pudasaini. 2021. “Evolution of stony debris flows in laboratory experiments.” Geomorphology 372 (Jan): 107431. https://doi.org/10.1016/j.geomorph.2020.107431.
Brilliantov, N. V., F. Spahn, J.-M. Hertzsch, and T. Pöschel. 1996. “Model for collisions in granular gases.” Phys. Rev. E 53 (5): 5382–5392. https://doi.org/10.1103/PhysRevE.53.5382.
Bugnion, L., B. W. McArdell, P. Bartelt, and C. Wendeler. 2012. “Measurements of hillslope debris flow impact pressure on obstacles.” Landslides 9 (2): 179–187. https://doi.org/10.1007/s10346-011-0294-4.
Buist, K. A., L. J. H. Seelen, N. G. Deen, J. T. Padding, and J. A. M. Kuipers. 2016. “On an efficient hybrid soft and hard sphere collision integration scheme for DEM.” Chem. Eng. Sci. 153 (Oct): 363–373. https://doi.org/10.1016/j.ces.2016.07.030.
Caccamo, P., B. Chanut, T. Faug, H. Bellot, and F. Naaim-Bouvet. 2012. “Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle.” Granular Matter 14 (5): 577–587. https://doi.org/10.1007/s10035-012-0358-8.
Canelli, L., A. M. Ferrero, M. Migliazza, and A. Segalini. 2012. “Debris flow risk mitigation by the means of rigid and flexible barriers-experimental tests and impact analysis.” Nat. Hazards Earth Syst. Sci. 12 (5): 1693–1699. https://doi.org/10.5194/nhess-12-1693-2012.
Chau, K. T., R. H. C. Wong, and C. F. Lee. 1998. “Rockfall problems in Hong Kong and some new experimental results for coefficients of restitution.” Int. J. Rock Mech. Min. Sci. Geomech. 35 (4–5): 662–663.
Choi, C. E., S. C. H. Au-Yeung, C. W. W. Ng, and D. Song. 2015. “Flume investigation of landslide granular debris and water runup mechanisms.” Géotech. Lett. 5 (1): 28–32. https://doi.org/10.1680/geolett.14.00080.
Choi, C. E., G. R. Goodwin, C. W. W. Ng, D. K. H. Cheung, J. S. H. Kwan, and W. K. Pun. 2016. “Coarse granular flow interaction with slit-structures.” Géotech. Lett. 6 (4): 267–274. https://doi.org/10.1680/jgele.16.00103.
Christoforou, A. P., A. S. Yigit, and M. Majeed. 2013. “Low-velocity impact response of structures with local plastic deformation: characterisation and scaling.” J. Comput. Nonlinear Dyn. 8 (1): 011012. https://doi.org/10.1115/1.4006532.
Coetzee, C. J. 2017. “Review: Calibration of the discrete element method.” Powder Technol. 310 (Apr): 104–142. https://doi.org/10.1016/j.powtec.2017.01.015.
Cui, Y., C. E. Choi, L. H. D. Liu, and C. W. W. Ng. 2018. “Effects of particle size of mono-disperse granular flows impacting a rigid barrier.” Nat. Hazards 91 (3): 1179–1201. https://doi.org/10.1007/s11069-018-3185-3.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
DCS Computing. 2020. LIGGGHTS user manual: Gran model. Linz, Austria: DCS Computing.
Faug, T., P. Caccamo, and B. Chanut. 2011. “Equation for the force experienced by a wall overflowed by a granular avalanche: Experimental verification.” Phys. Rev. E 84 (5): 051301. https://doi.org/10.1103/PhysRevE.84.051301.
Faug, T., P. Gauer, K. Lied, and M. Naaim. 2008. “Overrun length of avalanches overtopping catching dams: Cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches.” J. Geophys. Res. Earth Surf. 113 (F3): F03009. https://doi.org/10.1029/2007JF000854.
Faug, T., P. Lachamp, and M. Naaim. 2002. “Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead-zone upstream from the obstacle. application to interaction between dense snow avalanches and defence structures.” Nat. Hazards Earth Syst. Sci. 2 (3–4): 187–191. https://doi.org/10.5194/nhess-2-187-2002.
Faug, T., M. Naaim, D. Bertrand, and P. Lachamp. 2003. “Varying dam height to shorten the run-out of dense avalanche flows: developing a scaling law from laboratory experiments.” Surv. Geophys. 24 (5–6): 555–568. https://doi.org/10.1023/B:GEOP.0000006082.64341.80.
Goodwin, G. R., and C. E. Choi. 2020. “Slit structures: Fundamental mechanisms of mechanical trapping of granular flows.” Comput. Geotech. 119 (Mar): 103376. https://doi.org/10.1016/j.compgeo.2019.103376.
Goodwin, G. R., C. E. Choi, and C.-Y. Yune. 2021. “Towards rational use of baffle arrays on sloped and horizontal terrain for filtering boulders.” Can. Geotech. J. https://doi.org/10.1139/cgj-2020-0363.
Gray, J. M. N. T., Y. C. Tai, and S. Noelle. 2003. “Shock waves, dead-zones and particle-free regions in rapid granular free-surface flows.” J. Fluid Mech. 491 (Sep): 161–181. https://doi.org/10.1017/S0022112003005317.
Hákonadóttir, K. M., A. J. Hogg, J. Batey, and A. W. Woods. 2003a. “Flying avalanches.” Geophys. Res. Lett. 30 (23): 2191. https://doi.org/10.1029/2003GL018172.
Hákonadóttir, K. M., A. J. Hogg, and T. Jóhannesson. 2003b. A laboratory study of the interaction between supercritical shallow flows and dams. Rep. No. 03038. Reykjavík, Iceland: Iceland Meteorological Office.
Hübl, J., J. Suda, and D. Proske. 2009. “Debris flow impact estimation steep slopes.” In Vol. 1 of Proc., 11th Int. Symp. on Water Management and Hydraulic Engineering, 137–148. Skopje, Macedonia, Faculty of Civil Engineering, Univ. od Ss Cyril and Methodius.
Hungr, O., and S. G. Evans. 1988. “Engineering evaluation of fragmental rockfall hazards.” In Proc., 5th Int. Symp. on Landslides, 685–690. Rotterdam, Netherlands: CRC Press.
Ishikawa, N., R. Inoue, M. Beppu, Y. Hasegawa, and T. Mizuyama. 2010. “Dynamic load characteristics of debris flow model using different gravel size distribution.” In Proc., INTERPRAEVENT, 207–216. Taipei, Taiwan: International Research Society.
Iverson, R. M. 1997. “The physics of debris flows.” Rev. Geophys. 35 (3): 245–296. https://doi.org/10.1029/97RG00426.
Iverson, R. M. 2015. “Scaling and design of landslide and debris-flow experiments.” Geomorphology 244 (Mar): 9–20. https://doi.org/10.1016/j.geomorph.2015.02.033.
Iverson, R. M., and D. L. George. 2014. “A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis.” Proc. R. Soc.: Math. Phys. Eng. Sci. 470 (2170): 20130819. https://doi.org/10.1098/rspa.2013.0819.
Iverson, R. M., M. Logan, R. LaHusen, and M. Berti. 2010. “The perfect debris flow? Aggregated results from 28 large scale experiments.” J. Geophys. Res.: Earth Sci. 115: F03005. https://doi.org/10.1029/2009JF001514.
Jiang, Y., and I. Towhata. 2013. “Experimental study of dry granular flow and impact behavior against a rigid retaining wall.” Rock Mech. Rock Eng. 46 (4): 713–729. https://doi.org/10.1007/s00603-012-0293-3.
Jóhannesson, T., P. Gauer, D. Issler, and K. Lied. 2009. The design of avalanche protection dams recent practical and theoretical developments. Brussels, Belgium: European Commission.
Johnson, K. L. 1985. Contact mechanics. Cambridge, UK: Cambridge University Press.
Jop, P., Y. Forterre, and O. Pouliquen. 2006. “A constitutive law for dense granular flows.” Nature 441 (7094): 727–730. https://doi.org/10.1038/nature04801.
Kesseler, M., V. Heller, and B. Turnbull. 2020. “Grain Reynolds number scale effects in dry granular slides.” J. Geophys. Res. Earth Surf. (AGU) 125 (1): e2019JF005347. https://doi.org/10.1029/2019JF005347.
Kloss, C., and C. Goniva. 2010. “LIGGGHTS—A new open source discrete element simulation software.” In Proc., 5th Int. Conf. on Discrete Element Methods, 25–26. London: Queen Mary Univ. of London.
Kluger, J. M., T. Sapsis, and A. H. Slocum. 2016. “A high-resolution and large force-range load cell by means of nonlinear cantilever beams.” Precis. Eng. 43 (Jan): 241–256. https://doi.org/10.1016/j.precisioneng.2015.08.003.
Kneib, F., T. Faug, F. Dufour, and M. Naaim. 2016. “Numerical investigations of the force experienced by a wall subject to granular lid-driven flows: Regimes and scaling of the mean force.” Comput. Particle Mech. 3 (3): 293–302. https://doi.org/10.1007/s40571-015-0060-9.
Kneib, F., T. Faug, F. Dufour, and M. Naaim. 2019. “Mean force and fluctuations on a wall immersed in a sheared granular flow.” Phys. Rev. E 99 (5): 052901. https://doi.org/10.1103/PhysRevE.99.052901.
Kneib, F., T. Faug, G. Nicolet, N. Eckert, and M. Naaim. 2017. “Force fluctuationas on a wall in interaction with a granular lid-driven cavity flow.” Phys. Rev. E 96 (4): 042906. https://doi.org/10.1103/PhysRevE.96.042906.
Kumaran, V., and S. Bharathraj. 2013. “The effect of base roughness on the development of a dense granular flow down an inclined plane.” Phys. Fluids 25 (7): 070604. https://doi.org/10.1063/1.4812806.
Kwan, J. S. H. 2012. Supplementary technical guidance on design of rigid debris-resisting barriers. Hong Kong Special Administrative Region, People’s Republic of China: HKSAR Government.
Lam, C., C. Y. Yong, J. S. H. Kwan, and N. T. K. Lam. 2018a. “Overturning stability of l-shaped rigid barriers subjected to rockfall impacts.” Landslides 15 (7): 1347–1357. https://doi.org/10.1007/s10346-018-0957-5.
Lam, N. T. K., A. C. Y. Yong, C. Lam, J. S. H. Kwan, J. S. Perera, M. M. Disfani, and E. Gad. 2018b. “Displacement-based approach for the assessment of overturning stability of rectangular rigid barriers subjected to point impact.” J. Eng. Mech. 144 (2): 04017161. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001383.
Law, R. P. H., C. E. Choi, and C. W. W. Ng. 2015. “Discrete element investigation of the influence of granular debris flow baffles on rigid barrier impact.” Can. Geotech. J. 53 (2): 179–185.
Leonardi, A., G. R. Goodwin, and M. Pirulli. 2019. “The force exerted by granular flows on slit dams.” Acta Geotech. 14 (6): 1949–1963. https://doi.org/10.1007/s11440-019-00842-6.
Leonardi, A., F. K. Wittel, M. Mendoza, and H. J. Herrmann. 2014. “Coupled DEM-LBM method for the free-surface simulation of heterogenous suspensions.” Comput. Particle Mech. 1 (1): 3–13. https://doi.org/10.1007/s40571-014-0001-z.
Leonardi, A., F. K. Wittel, M. Mendoza, R. Vetter, and H. J. Herrmann. 2016. “Particle-fluid-structure interaction for debris flow impact on flexible barriers.” Comput. Aided Civ. Infrastruct. Eng. 31 (5): 323–333. https://doi.org/10.1111/mice.12165.
Mancarella, D., and O. Hungr. 2010. “Analysis of runup of granular avalanches against steep, adverse slopes and protective barriers.” Can. Geotech. J. 47 (8): 827–841. https://doi.org/10.1139/T09-143.
Maranzano, B. J., and B. C. Hancock. 2016. “Quantitative analysis of impact measurements using dynamic load cells.” Sens. Bio-Sens. Res. 7 (Mar): 31–37. https://doi.org/10.1016/j.sbsr.2015.11.005.
Marchelli, M., A. Leonardi, M. Pirulli, and C. Scavia. 2019. “On the efficiency of slit-check dams in retaining granular flows.” Géotechnique 70 (3): 226–237. https://doi.org/10.1680/jgeot.18.P.044.
Marin, F., A. Rohatgi, and S. Charlot. 2017. “WebPlotDigitizer, a polyvalent and free software to extract spectra from old astronomical publications: Application to ultraviolet spectropolarim.” In Instrumentation and methods for astrophysics. New York: Cornell Univ.
Moriguchi, S., R. I. Borja, A. Yashima, and K. Sawada. 2009. “Estimating the impact force generated by granular flow on a rigid obstruction.” Acta Geotech. 4 (1): 57–71. https://doi.org/10.1007/s11440-009-0084-5.
Murdoch, N., P. Michel, D. C. Richardson, K. Nordstrom, C. R. Berardi, S. F. Green, and W. Losert. 2012. “Numerical simulations of granular dynamics II: Particle dynamics in a shaken granular material.” Icarus 219 (1): 321–335. https://doi.org/10.1016/j.icarus.2012.03.006.
Naaim-Bouvet, F., M. Naaim, and T. Faug. 2004. “Dense and powder avalanches: Momentum reduction generated by a dam.” Ann. Glaciol. 38: 373–378. https://doi.org/10.3189/172756404781815185.
Ng, C. W. W., C. E. Choi, and G. R. Goodwin. 2019. “Froude characterisation for unsteady single-surge dry granular flows: impact pressure and runup height.” Can. Geotech. J. 56 (12): 1968–1978. https://doi.org/10.1139/cgj-2018-0529.
Ng, C. W. W., C. E. Choi, G. R. Goodwin, and W. Cheung. 2017. “Interaction between dry granular flow and deflectors.” Landslides 14 (4): 1375–1387. https://doi.org/10.1007/s10346-016-0794-3.
Ng, C. W. W., C. E. Choi, R. C. H. Koo, G. R. Goodwin, D. Song, and J. S. H. Kwan. 2018a. “Dry granular flow interaction with dual-barrier systems.” Géotechnique 68 (5): 386–399. https://doi.org/10.1680/jgeot.16.P.273.
Ng, C. W. W., H. Liu, C. E. Choi, J. S. H. Kwan, and W. K. Pun. 2021. “Impact dynamics of boulder-enriched debris flow on a rigid barrier.” J. Geotech. Geoenviron. Eng. 147 (3): 04021004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002485.
Ng, C. W. W., D. Song, C. E. Choi, L. H. D. Liu, J. S. H. Kwan, R. C. H. Koo, and W. K. Pun. 2016. “Impact mechanisms of granular and viscous flows on rigid and flexible barriers.” Can. Geotech. J. 54 (2): 188–206. https://doi.org/10.1139/cgj-2016-0128.
Ng, C. W. W., A. Y. Su, C. E. Choi, C. Lam, J. S. H. Kwan, R. Chen, and H. Liu. 2018b. “Comparison of cushion mechanisms between cellular glass and gabions subjected to successive boulder impacts.” J. Geotech. Geoenviron. Eng. 144 (9): 04018058. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001922.
NILIM (National Institute for Land and Infrastructure Management). 2007. Manual of technical standard for establishing sabo master plan for debris flow and driftwood. Tsukuba, Japan: NILIM.
O’Sullivan, C. 2011. Particulate discrete element modelling: A geomechanics perspective. Boca Raton, FL: CRC Press.
Piton, G., and A. Recking. 2016a. “Design of sediment traps with open check dams. I: Hydraulic and deposition processes.” J. Hydraul. Eng. 142 (2): 04015045. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001048.
Piton, G., and A. Recking. 2016b. “Design of sediment traps with open check dams. II: Woody debris.” J. Hydraul. Eng. 142 (2): 04015046. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001049.
Pudasaini, S. P., K. Hutter, S.-S. Hsiau, S.-C. Tai, Y. Wang, and R. Katzenbach. 2007. “Rapid flow of dry granular materials down inclined chutes impinging on rigid walls.” Phys. Fluids 19 (5): 053302. https://doi.org/10.1063/1.2726885.
Richardson, D. C., K. J. Walsh, N. Murdoch, and P. Michel. 2011. “Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests.” Icarus 212 (1): 427–437. https://doi.org/10.1016/j.icarus.2010.11.030.
Salciarini, D., C. Tamagnini, and P. Conversini. 2010. “Discrete element modelling of debris-avalanche impact on earthfill barriers.” Phys. Chem. Earth 35 (3–5): 172–181. https://doi.org/10.1016/j.pce.2009.05.002.
Sandeep, C. S., K. Senetakis, D. K. H. Cheung, C. E. Choi, Y. Wang, M. R. Coop, and C. W. W. Ng. 2020. “Experimental study on the coefficient of restitution of grain against block interfaces for natural and engineered materials.” Can. Geotech. J. 58 (1): 35–48. https://doi.org/10.1139/cgj-2018-0712.
Scheidl, C., M. Chiari, R. Kaitna, M. Müllegger, A. Krawtschuk, T. Zimmermann, and D. Proske. 2013. “Analysing debris-flow impact models, based on a small scale modelling approach.” Surv. Geophys. 34 (1): 121–140. https://doi.org/10.1007/s10712-012-9199-6.
Shan, T., and J. Zhao. 2014. “A coupled CFD-DEM analysis of granular flow impacting on water reservoir.” Acta Mech. 225 (8): 2449–2470. https://doi.org/10.1007/s00707-014-1119-z.
Sheih, C. L., C. H. Ting, and W. Pan. 2008. “Impulsive force of debris flow on a curved dam.” Int. J. Sediment Res. 23 (2): 149–158. https://doi.org/10.1016/S1001-6279(08)60014-1.
Shen, W., T. Zhao, J. Zhao, F. Dai, and G. D. D. Zhou. 2018. “Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses.” Eng. Geol. 241 (Jul): 86–96. https://doi.org/10.1016/j.enggeo.2018.05.011.
Silbert, L. E., D. Ertas, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimpton. 2001. “Granular flow down an inclined plane: Bagnold scaling and rheology.” Phys. Rev. E 64 (5): 051302. https://doi.org/10.1103/PhysRevE.64.051302.
Song, D. 2016. “Mechanisms of debris flow impact on rigid and flexible barriers.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology.
Song, D., C. E. Choi, G. G. D. Zhou, J. S. H. Kwan, and H. Y. Sze. 2018. “Impulse load characteristics of boulder debris flow impact.” Géotech. Lett. 8 (2): 111–117. https://doi.org/10.1680/jgele.17.00159.
Song, D., C. W. W. Ng, C. E. Choi, G. G. D. Zhou, J. S. H. Kuan, and R. C. H. Koo. 2017. “Influence of debris flow solid fraction on rigid barrier impact.” Can. Geotech. J. 54 (10): 1421–1434. https://doi.org/10.1139/cgj-2016-0502.
Spadari, M., A. Glacomini, O. Buzzi, and J. P. Hambleton. 2012. “Prediction of the bullet effect for rockfall barriers: A scaling approach.” Rock Mech. Rock Eng. 45 (2): 131–144. https://doi.org/10.1007/s00603-011-0203-0.
Stratton, R., and C. Wensrich. 2010. “Modelling of multiple intra-time step collisions in the hard-sphere discrete element method.” Powder Technol. 199 (2): 120–130. https://doi.org/10.1016/j.powtec.2009.12.008.
Su, Y., C. E. Choi, C. W. W. Ng, C. Lam, J. S. H. Kwan, G. Wu, J. Huang, and Z. Zhang. 2018. “Eco-friendly recycled crushed glass for cushioning boulder impacts.” Can. Geotech. J. 56 (9): 1251–1260. https://doi.org/10.1139/cgj-2018-0200.
Su, Y., Y. Cui, C. W. W. Ng, C. E. Choi, and J. S. H. Kwan. 2017. “Effects of particle size and cushioning thickness on the performance of rock-filled gabions used in protection against boulder impact.” Can. Geotech. J. 56 (2): 198–207. https://doi.org/10.1139/cgj-2017-0370.
Tan, D., J. Yin, W. Feng, Z. Zhu, J. Qin, and W. Chen. 2020. “New simple method for calculating impact force on flexible barrier considering partial muddy debris flow passing through.” J. Geotech. Geoenviron. Eng. 145 (9): 04019051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002133.
Teufelsbauer, H., Y. Wang, M.-C. Chiou, and W. Wu. 2009. “Flow-obstacle-interaction in rapid granular avalanches: DEM simulation and comparison with experiment.” Granular Matter 11 (4): 209–220. https://doi.org/10.1007/s10035-009-0142-6.
Teufelsbauer, H., Y. Wang, S. P. Pudasaini, R. I. Borja, and W. Wu. 2011. “DEM simulation of impact force exerted by granular flow on rigid structures.” Acta Geotech. 6 (3): 119–133. https://doi.org/10.1007/s11440-011-0140-9.
Thielicke, W., and E. J. Stamhuis. 2014. “PIVlab-time-resolved digital particle image velocimetry tool for MATLAB.” J. Open Res. Software 2 (1): 1–10. https://doi.org/10.5334/jors.bl.
Tiberghien, D., D. Laigle, M. Naaim, E. Thibert, and F. Ousset. 2007. “Experimental investigation of interaction between mudflow and obstacle.” In Debris-flow hazards mitigation: Mechanics, prediction and assessment, edited by C. Chen and J. J. Major, 281–292. Rotterdam, Netherlands: Millpress Science Publishers.
Vagnon, F., and A. Segalini. 2016. “Debris flow impact estimation on a rigid barrier.” Nat. Hazards Earth Syst. Sci. 16 (7): 1691–1697. https://doi.org/10.5194/nhess-16-1691-2016.
WSL (Wald, Schnee und Landschaft). 2008. Integral risk management of extremely rapid mass movements. Birmensdorf, Switzerland: WSL.
Yigit, A. S., A. P. Christoforou, and M. A. Majeed. 2011. “A nonlinear visco-elastoplastic impact model and the coefficient of restitution.” Nonlinear Dyn. 66 (4): 509–521. https://doi.org/10.1007/s11071-010-9929-6.
Yong, A. C. Y., C. Lam, N. T. K. Lam, and J. S. Perera. 2019. “Analytical solution for estimating sliding displacement of rigid barriers subjected to boulder impact.” J. Eng. Mech. 145 (3): 04019006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001576.
Zhang, B., and Y. Huang. 2021. “Unsteady overflow behavior of polydisperse granular flows against closed type barrier.” Eng. Geol. 280 (Jan): 105959. https://doi.org/10.1016/j.enggeo.2020.105959.
Zhang, H. P., and H. A. Makse. 2005. “Jamming transition in emulsions and granular materials.” Phys. Rev. E 72 (1): 011301. https://doi.org/10.1103/PhysRevE.72.011301.
Zhang, S., O. Hungr, and O. Slaymaker. 1996. “The calculation of impact force of boulders in debris flow.” In Debris flow observation and research, edited by R. Du. Beijing: Science Press.
Zhou, G. G. D., and C. W. W. Ng. 2010. “Numerical investigation of reverse segregation in debris flows by DEM.” Granular Matter 12 (5): 507–516. https://doi.org/10.1007/s10035-010-0209-4.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 12December 2021

History

Received: Dec 5, 2020
Accepted: Jul 1, 2021
Published online: Sep 28, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 28, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Saoirse Robin Goodwin, Ph.D. [email protected]
Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Grenoble 38100, France; Dept. of Civil Engineering, Univ. of Hong Kong, Pokfulam, Hong Kong SAR. Email: [email protected]
Clarence Edward Choi, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering, Univ. of Hong Kong, Pokfulam, Hong Kong SAR (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A Physical and Numerical Investigation of Flow–Barrier Interaction for the Design of a Multiple-Barrier System, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/(ASCE)GT.1943-5606.0002932, 149, 1, (2023).
  • DEM investigation of the interaction between rapid dry granular flow and dual-slit structures, Engineering Geology, 10.1016/j.enggeo.2022.106957, 313, (106957), (2023).
  • Revealing the role of forests in the mobility of geophysical flows, Computers and Geotechnics, 10.1016/j.compgeo.2022.105194, 155, (105194), (2023).
  • Quantifying the impact load of rapid dry granular flows exerted on rigid slit structures using centrifuge experiments and DEM simulation, Computers and Geotechnics, 10.1016/j.compgeo.2022.105059, 152, (105059), (2022).
  • Effect of ice content on the interaction between rock–ice avalanche and rigid barrier: Physical and numerical modelling, Computers and Geotechnics, 10.1016/j.compgeo.2022.104924, 150, (104924), (2022).
  • Numerical and analytical analyses of the impact of monodisperse and bidisperse granular flows on a baffle structure, Landslides, 10.1007/s10346-022-01927-2, 19, 11, (2629-2651), (2022).
  • Research on the buffering measure of rock shed against the impact of dry granular flow with concern of structure damage, Landslides, 10.1007/s10346-022-01925-4, 19, 11, (2605-2627), (2022).
  • Effect of unsteady flow dynamics on the impact of monodisperse and bidisperse granular flow, Bulletin of Engineering Geology and the Environment, 10.1007/s10064-022-02573-7, 81, 2, (2022).
  • Effects of interactions between transient granular flows and macroscopically rough beds and their implications for bulk flow dynamics, Canadian Geotechnical Journal, 10.1139/cgj-2020-0160, 58, 12, (1943-1960), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share