Technical Papers
Aug 30, 2021

General Thermal Conductivity Function for Unsaturated Soils Considering Effects of Water Content, Temperature, and Confining Pressure

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 11

Abstract

The thermal conductivity function (TCF) is an important constitutive function establishing the thermal conductivity–water content relationship in unsaturated soils. The existing TCFs do not account for the effects of confining pressure, nor do they consider thermal induced changes in pore structure and degree of saturation. This study presents a general TCF by considering the temperature effects on pore structure, degree of saturation, different heat transfer mechanisms (i.e., conduction, convection, and latent heat of vaporization), and the confining pressure. The TCF is linked to a temperature-dependent soil water retention curve (SWRC) model to include the impact of temperature on pore structure and degree of saturation. The proposed model applies a decay function to the degree of saturation to account for thermally induced changes in heat transfer mechanisms through conduction and convection of pore water in both liquid and vapor phases and latent heat transfer due to vaporization. A new function is introduced into the TCF to incorporate the effects of confining pressure on thermal conductivity that corresponds to the void ratio changes. The proposed TCF was validated against experimentally measured data for several different soils at zero confining pressure and one soil at various confining pressures reported in the literature. The comparison showed that the proposed TCF can capture laboratory-measured data properly, with prediction errors significantly lower than those from several alternative models.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This material is based upon work supported in part by the National Science Foundation (NSF) under Grant No. CMMI-1634748 and the US Army Engineer Research and Development Center (ERDC) under contract W912HZ19C0036. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of NSF, ERDC, or the US Government. Distribution Statement A: Approved for public release: distribution unlimited.

References

Abdollahi, M., F. Vahedifard, M. Abed, and B. A. Leshchinsky. 2021. “Effect of tension crack formation on active earth pressures encountered in unsaturated retaining wall backfills.” J. Geotech. Geoenviron. Eng. 147 (2): 06020028. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002434.
Aduda, B. O. 1996. “Effective thermal conductivity of loose particulate systems.” J. Mater. Sci. 31 (24): 6441–6448. https://doi.org/10.1007/BF00356246.
Alsherif, N. A., and J. S. McCartney. 2015. “Thermal behaviour of unsaturated silt at high suction magnitudes.” Géotechnique 65 (9): 703–716. https://doi.org/10.1680/geot.14.P.049.
Brandon, T. L., and J. K. Mitchell. 1989. “Factors influencing thermal resistivity of sands.” J. Geotech. Eng. 115 (12): 1683–1698. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:12(1683).
Campbell, G. S., J. D. Jungbauer Jr., W. R. Bidlake, and R. D. Hungerford. 1994. “Predicting the effect of temperature on soil thermal conductivity.” Soil Sci. 158 (5): 307–313. https://doi.org/10.1097/00010694-199411000-00001.
Cass, A., G. S. Campbell, and T. L. Jones. 1984. “Enhancement of thermal water vapor diffusion in soil.” Soil Sci. Soc. Am. J. 48 (1): 25–32. https://doi.org/10.2136/sssaj1984.03615995004800010005x.
Chen, S. X. 2008. “Thermal conductivity of sands.” Heat Mass Transfer 44 (10): 1241–1246. https://doi.org/10.1007/s00231-007-0357-1.
Cho, G. C., and J. C. Santamarina. 2001. “Unsaturated particulate materials—Particle-level studies.” J. Geotech. Geoenviron. Eng. 127 (1): 84–96. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(84).
Clutter, M., and T. P. A. Ferré. 2018. “Examining the potentials and limitations of using temperature tracing to infer water flux through unsaturated soils.” Vadose Zone J. 17 (1): 1–8. https://doi.org/10.2136/vzj2017.10.0181.
Coccia, C. J. R., and J. S. McCartney. 2012. “A thermo-hydro-mechanical true triaxial cell for evaluation of the impact of anisotropy on thermally-induced volume changes in soils.” ASTM Geotech. Test. J. 35 (2): 227–237. https://doi.org/10.1520/GTJ103803.
Cortes, D. D., A. I. Martin, T. S. Yun, F. M. Francisca, J. C. Santamarina, and C. Ruppel. 2009. “Thermal conductivity of hydrate‐bearing sediments.” J. Geophy. Res. Solid Earth 114 (B11): B11103. https://doi.org/10.1029/2008JB006235.
Côté, J., and J.-M. Konrad. 2005. “A generalized thermal conductivity model for soils and construction materials.” Can. Geotech. J. 42 (2): 443–458. https://doi.org/10.1139/t04-106.
de Vries, D. A. 1963. “Thermal properties of soils.” In Physics of plant environment, edited by W. R. Van Wijk, 210–235. New York: Wiley.
Dong, Y., J. S. McCartney, and N. Lu. 2015. “Critical review of thermal conductivity models for unsaturated soils.” Geotech. Geol. Eng. 33 (2): 207–221. https://doi.org/10.1007/s10706-015-9843-2.
Ebigbo, A. 2005. “Thermal effects of carbon dioxide sequestration in the subsurface.” Doctoral dissertation, Institut für Wasserbau, Universität Stuttgart.
Esch, D. C. 2004. Thermal analysis, construction, and monitoring methods for frozen ground. Reston, VA: ASCE.
Everett, D. H. 1972. “Manual of symbols and terminology for physicochemical quantities and units, Appendix II: Definitions, terminology and symbols in colloid and surface chemistry.” Pure Appl. Chem. 31 (4): 577–638. https://doi.org/10.1351/pac197231040577.
Gangadhara Rao, M. V. B. B., and D. N. Singh. 1999. “A generalized relationship to estimate thermal resistivity of soils.” Can. Geotech. J. 36 (4): 767–773. https://doi.org/10.1139/t99-037.
Goodman, C. C., and F. Vahedifard. 2019. “Micro-scale characterisation of clay at elevated temperatures.” Géotechnique Lett. 9 (3): 225–230. https://doi.org/10.1680/jgele.19.00026.
Gori, F. 1983. “A theoretical model for predicting the effective thermal conductivity of unsaturated frozen soils.” In Proc., 4th Int. Conf. on Permafrost, 363–368. Washington, DC: National Academy Press.
Gori, F., and S. Corasaniti. 2002. “Theoretical prediction of the soil thermal conductivity at moderately high temperatures.” J. Heat Transfer 124 (6): 1001–1008. https://doi.org/10.1115/1.1513573.
Grant, S. A., and A. Salehzadeh. 1996. “Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions.” Water Resour. Res. 32 (2): 261–270. https://doi.org/10.1029/95WR02915.
Haigh, S. K. 2012. “Thermal conductivity of sands.” Géotechnique 62 (7): 617–625. https://doi.org/10.1680/geot.11.P.043.
Hardin, B. O. 1978. “The nature of stress-strain behavior for soils.” In Vol. 1 of Proc., ASCE Geotechnical Engineering Division Specialty Conf. on Earthquake Engineering and Soil Dynamics, 1–90. Reston, VA: ASCE.
Hiraiwa, Y., and T. Kasubuchi. 2000. “Temperature dependence of thermal conductivity of soil over a wide range of temperature (5–75°C).” Eur. J. Soil Sci. 51 (2): 211–218. https://doi.org/10.1046/j.1365-2389.2000.00301.x.
Hu, X.-J., J.-H. Du, S.-Y. Lei, and B.-X. Wang. 2001. “A model for the thermal conductivity of unconsolidated porous media based on capillary pressure-saturation relation.” Int. J. Heat Mass Transfer 44 (1): 247–251. https://doi.org/10.1016/S0017-9310(00)00079-X.
Jin, H., Y. Wang, Q. Zheng, H. Liu, and E. Chadwick. 2017. “Experimental study and modelling of the thermal conductivity of sandy soils of different porosities and water contents.” Appl. Sci. 7 (2): 119. https://doi.org/10.3390/app7020119.
Johansen, O. 1975. “Thermal conductivity of soils.” Ph.D. dissertation, Defense Technical Information Center, Norwegian Univ. of Science and Technology.
Kasubuchi, T. 1992. “Development of in-situ soil water measurement by heat-probe method.” JARQ (Japan) 26 (3): 178–181.
Kasubuchi, T., and S. Hasegawa. 1994. “Measurement of spatial average of field soil water content by the long heat probe method.” Soil Sci. Plant Nutr. 40 (4): 565–571. https://doi.org/10.1080/00380768.1994.10414295.
Lu, N. 2016. “Generalized soil water retention equation for adsorption and capillarity.” J. Geotech. Geoenviron. Eng. 142 (10): 04016051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001524.
Lu, N., and Y. Dong. 2015. “Closed-form equation for thermal conductivity of unsaturated soils at room temperature.” J. Geotech. Geoenviron. Eng. 141 (6): 04015016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001295.
Lu, N., and S. Ge. 1996. “Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer.” Water Resour. Res. 32 (5): 1449–1453. https://doi.org/10.1029/95WR03095.
Lu, N., and W. J. Likos. 2004. Unsaturated soil mechanics. New York: Wiley.
Lu, N., and W. J. Likos. 2006. “Suction stress characteristic curve for unsaturated soil.” J. Geotech. Geoenviron. Eng. 132 (2): 131–142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).
Lu, S., T. Ren, Y. Gong, and R. Horton. 2007. “An improved model for predicting soil thermal conductivity from water content at room temperature.” Soil Sci. Soc. Am. J. 71 (1): 8–14. https://doi.org/10.2136/sssaj2006.0041.
McCartney, J. S., C. J. R. Coccia, N. Alsherif, and M. A. Stewart. 2013. “Energy geostructures in unsaturated soils.” In Energy geo-structures: Innovation in underground engineering, edited by L. Laloui and A. DiDonna, 99–114. Hoboken, NJ: Wiley.
McCartney, J. S., N. H. Jafari, T. Hueckel, M. Sanchez, and F. Vahedifard. 2019. “Emerging thermal issues in geotechnical engineering.” In Geotechnical fundamentals for addressing new world challenges, edited by N. Lu and J. K. Mitchell, 275–317. Berlin: Springer.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. New York: Wiley.
Moradi, A., K. M. Smits, N. Lu, and J. S. McCartney. 2016. “Heat transfer in unsaturated soil with application to borehole thermal energy storage.” Vadose Zone J. 15 (10): 16. https://doi.org/10.2136/vzj2016.03.0027.
Preene, M., and W. Powrie. 2009. “Ground energy systems: From analysis to geotechnical design.” Géotechnique 59 (3): 261–271. https://doi.org/10.1680/geot.2009.59.3.261.
Robinson, J. D., and F. Vahedifard. 2016. “Weakening mechanisms imposed on California’s levees under multiyear extreme drought.” Clim. Change 137 (1): 1–14. https://doi.org/10.1007/s10584-016-1649-6.
Sahimi, M., and T. T. Tsotsis. 1997. “Transient diffusion and conduction in heterogeneous media: Beyond the classical effective-medium approximation.” Ind. Eng. Chem. Res. 36 (8): 3043–3052. https://doi.org/10.1021/ie960602k.
Salimi, K., A. Cerato, F. Vahedifard, and G. Miller. 2021a. “Tensile strength of compacted clays during desiccation under elevated temperatures.” Geotech. Test. J. 44 (4): 12. https://doi.org/10.1520/GTJ20200114.
Salimi, K., A. Cerato, F. Vahedifard, and G. A. Miller. 2021b. “A temperature-dependent model for tensile strength characteristic curve of unsaturated soils.” Geomech. Energy Environ. 28 (Dec): 100244. https://doi.org/10.1016/j.gete.2021.100244.
Samarakoon, R. A., and J. S. McCartney. 2019. “Simplified model for heat transfer in unsaturated soils considering a nonisothermal thermal conductivity function.” Geotech. Eng. J. 50 (1): 16–22.
Slavin, A. J., F. A. Londry, and J. Harrison. 2000. “A new model for the effective thermal conductivity of packed beds of solid spheroids: Alumina in helium between 100 and 500°C.” Int. J. Heat Mass Transfer 43 (Jun): 2059–2073. https://doi.org/10.1016/S0017-9310(99)00290-2.
Smith, W. O. 1942. “The thermal conductivity of dry soil.” Soil Sci. 53 (6): 435–460. https://doi.org/10.1097/00010694-194206000-00003.
Smits, K. M., T. Sakaki, S. E. Howington, J. F. Peters, and T. H. Illangasekare. 2013. “Temperature dependence of thermal properties of sands over a wide range of temperatures (30–70°C).” Vadose Zone J. 12 (1): 33. https://doi.org/10.2136/vzj2012.0033.
Tang, C., B. Shi, C. Liu, L. Zhao, and B. Wang. 2008. “Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils.” Eng. Geol. 101 (3–4): 204–217. https://doi.org/10.1016/j.enggeo.2008.05.005.
Tang, C.-S., Y.-J. Cui, A.-M. Tang, and B. Shi. 2010. “Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils.” Eng. Geol. 114 (3–4): 261–266. https://doi.org/10.1016/j.enggeo.2010.05.003.
Tarnawski, V. R., F. Gori, B. Wagner, and G. D. Buchan. 2000a. “Modeling Approaches to predicting thermal conductivity of soils at high temperatures.” Int. J. Energy Res. 24 (5): 403–423. https://doi.org/10.1002/(SICI)1099-114X(200004)24:5%3C403::AID-ER588%3E3.0.CO;2-.
Tarnawski, V. R., W. H. Leong, and K. L. Bristow. 2000b. “Developing a temperature-dependent Kersten function for soil thermal conductivity.” Int. J. Energy Res. 24 (15): 1335–1350. https://doi.org/10.1002/1099-114X(200012)24:15%3C1335::AID-ER652%3E3.0.CO;2-X.
Tarnawski, V. R., M. L. McCombie, T. Momose, I. Sakaguchi, and W. H. Leong. 2013. “Thermal conductivity of standard sands. Part III. Full range of saturation.” Int. J. Thermophys. 34 (Apr): 1130–1147. https://doi.org/10.1007/s10765-013-1455-6.
Tarnawski, V. R., T. Momose, and W. H. Leong. 2009. “Assessing the impact of quartz content on the prediction of soil thermal conductivity.” Géotechnique 59 (4): 331–338. https://doi.org/10.1680/geot.2009.59.4.331.
Vahedifard, F., A. AghaKouchak, and N. H. Jafari. 2016a. “Compound hazards yield Louisiana flood.” Science 353 (6306): 1374. https://doi.org/10.1126/science.aai8579.
Vahedifard, F., A. AghaKouchak, E. Ragno, S. Shahrokhabadi, and I. Mallakpour. 2017. “Lessons from the Oroville Dam.” Science 355 (6330): 1139–1140. https://doi.org/10.1126/science.aan0171.
Vahedifard, F., T. D. Cao, E. Ghazanfari, and S. K. Thota. 2019. “Closed-form models for nonisothermal effective stress of unsaturated soils.” J. Geotech. Geoenviron. Eng. 145 (9): 04019053. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002094.
Vahedifard, F., T. D. Cao, S. K. Thota, and E. Ghazanfari. 2018. “Nonisothermal models for soil–water retention curve.” J. Geotech. Geoenviron. Eng. 144 (9): 04018061. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001939.
Vahedifard, F., J. D. Robinson, and A. AghaKouchak. 2016b. “Can protracted drought undermine the structural integrity of California’s earthen levees?” J. Geotech. Geoenviron. Eng. 142 (6): 02516001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001465.
Vahedifard, F., S. K. Thota, T. C. Cao, R. A. Samarakoon, and J. S. McCartney. 2020. “A temperature-dependent model for small-strain shear modulus of unsaturated soils.” J. Geotech. Geoenviron. Eng. 146 (12): 04020136. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002406.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Vargas, W. L., and J. J. McCarthy. 2001. “Heat conduction in granular materials.” AIChE J. 47 (5): 1052–1059. https://doi.org/10.1002/aic.690470511.
Wallen, B. M., K. M. Smits, T. Sakaki, S. E. Howington, and T. K. K. C. Deepagoda. 2016. “Thermal conductivity of binary sand mixtures evaluated through full water content range.” Soil Sci. Soc. Am. J. 80 (3): 592–603. https://doi.org/10.2136/sssaj2015.11.0408.
Watson, K. M. 1943. “Thermodynamics of the liquid state.” Ind. Eng. Chem. 35 (4): 398–406. https://doi.org/10.1021/ie50400a004.
Xu, L., W. M. Ye, B. Chen, Y. G. Chen, and Y. J. Cui. 2016. “Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials.” Eng. Geol. 213 (81): 46–54. https://doi.org/10.1016/j.enggeo.2016.08.015.
Xu, Y., D. Sun, Z. Zeng, and H. Lv. 2019. “Effect of temperature on thermal conductivity of lateritic clays over a wide temperature range.” Int. J. Heat Mass Transfer 138 (Jan): 562–570. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.077.
Yao, J., H. Oh, W. J. Likos, and J. M. Tinjum. 2014. “Three laboratory methods for measuring thermal resistivity dryout curves of coarse-grained soils.” Geotech. Test. J. 37 (6): 20140120. https://doi.org/10.1520/GTJ20140120.
Yao, J., T. Wang, and W. J. Likos. 2019. “Measuring thermal conductivity of unsaturated sand under different temperatures and stress levels using a suction-controlled thermo-mechanical method.” In Geo-congress 2019: Geotechnical materials, modeling, and testing, 784–793. Reston, VA: ASCE.
Yun, T. S., and J. C. Santamarina. 2008. “Fundamental study of thermal conduction in dry soils.” Granular Matter 10 (3): 197. https://doi.org/10.1007/s10035-007-0051-5.
Zhang, N., and Z. Wang. 2017. “Review of soil thermal conductivity and predictive models.” Int. J. Therm. Sci. 117 (21): 172–183. https://doi.org/10.1016/j.ijthermalsci.2017.03.013.
Zhang, T., G. Cai, S. Liu, and A. J. Puppala. 2017. “Investigation on thermal characteristics and prediction models of soils.” Int. J. Heat Mass Transfer 106 (3): 1074–1086. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.084.
Zhang, Y., N. Lu, and B. Ross. 1994. “Convective instability of moist gas in a porous medium.” Int. J. Heat Mass Transfer 37 (1): 129–138. https://doi.org/10.1016/0017-9310(94)90167-8.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 11November 2021

History

Received: Jun 23, 2020
Accepted: Jun 30, 2021
Published online: Aug 30, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 30, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Toan Duc Cao, A.M.ASCE [email protected]
Adjunct Professor, Dept. of Civil Engineering Technology, Environmental Management and Safety, Rochester Institute of Technology, NY 14623; formerly, Postdoctoral Research Associate, Center for Advanced Vehicular Systems (CAVS) and Richard A. Rula School of Civil and Environmental Engineering, Mississippi State Univ., Mississippi State, MS 39762. Email: [email protected]
Sannith Kumar Thota, A.M.ASCE [email protected]
Senior Staff Engineer, Schnabel Engineering, 46020 Manekin Plaza #150, Sterling, VA 20166; formerly, Ph.D. Candidate, Richard A. Rula School of Civil and Environmental Engineering, Mississippi State Univ., Mississippi State, MS 39762. Email: [email protected]
Civil and Environmental Engineering (CEE) Advisory Board Endowed Professor and Professor, Richard A. Rula School of Civil and Environmental Engineering, Mississippi State Univ., Mississippi State, MS 39762 (corresponding author). ORCID: https://orcid.org/0000-0001-8883-4533. Email: [email protected]
Amin Amirlatifi [email protected]
Assistant Professor, Swalm School of Chemical Engineering, Mississippi State Univ., Mississippi State, MS 39762. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Thermal Conductivity Function for Fine-Grained Unsaturated Soils Linked with Water Retention by Capillarity and Adsorption, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11669, 150, 1, (2024).
  • Coupled effects of stress state and void ratio on thermal conductivity of saturated soils, Géotechnique Letters, 10.1680/jgele.22.00001, 12, 2, (148-153), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share