Technical Papers
May 11, 2021

Effects of Soil Conditions on the Cone Resistance of Lightweight Penetrometers

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 7

Abstract

When exploration depth is shallow or site access is limited, a dynamic lightweight penetrometer is an attractive alternative to large penetrometers. Cone resistance, regardless of the penetration test, is influenced strongly by soil conditions: dry unit weight, overburden stress and water content of the surrounding soil, and fines content. This study explored the effects of these parameters on the cone resistance is in a calibration chamber. A series of tests was conducted in clean sands and mine tailings materials, subjected to different overburden stresses and prepared to different void ratios and degrees of saturation. It was found that dry unit weight and overburden stress significantly increases cone resistance. The effects of water content on cone resistance were more significant in mine tailings materials than in clean sands. An overburden correction factor for a dynamic lightweight penetrometer is proposed based on soil conditions, including fines content. Differences from common correction factors used for large penetrometers were observed, and were attributed to the type of soil and range of overburden stress explored in this study.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data and models generated during the study appear in the published article.

Acknowledgments

The authors acknowledge funding provided by DI Interdisciplinaria Pontificia Universidad Católica de Valparaíso (PUCV), 14ENI2-26905: “Inteligencia Artificial para el Monitoreo de la estabilidad de Depósitos de Relaves.” The second author thanks Dirección General de Investigación, Innovación y Postgrado (DGIIP) of Universidad Técnica Federico Santa María, for their economic support during completion of postgraduate studies. The authors also thank staff of Laboratorio de Ensaye & Control de Materiales (LEMCO) at Universidad Técnica Federico Santa María for their continuous support.

References

AFNOR (Association Française de Normalisation). 2012. Soils: Investigation and testing measuring compaction quality—Method using variable energy dynamic penetrometer—Penetrometer calibration principle and method—Processing results—Interpretation. NF P94-105. La Plaine Saint-Denis, France: AFNOR.
ASTM. 2015. Standard test method for soil compaction determination at shallow depths using 5-lb (2.3 kg) dynamic cone penetrometer. ASTM D7380-15. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test method for use of the dynamic cone penetrometer in shallow pavement applications.” ASTM D6951/D6951M-18. West Conshohocken, PA: ASTM.
Baldi, G., R. Bellotti, V. Ghionna, M. Jamiokowski, and E. Pasqualini. 1982. “Design parameters for sands from CPT.” In Vol. 2 of Proc., 2nd European Symp. Penetration Testing, 425−432. Rotterdam, Netherlands: A.A. Balkema.
Bazaraa, A. R. 1967. “Use of the standard penetration test for estimating settlements of shallow foundations on sand.” Ph. D. dissertation, Dept. of Civil Engineering, Univ. of Illinois, Urbana-Champaign.
Been, K., J. H. A. Crooks, D. E. Becker, and M. G. Jefferies. 1986. “The cone penetration test in sands: Part I, state parameter interpretation.” Géotechnique 36 (2): 239–249. https://doi.org/10.1680/geot.1986.36.2.239.
Been, K., M. G. Jefferies, J. H. A. Crooks, and L. Rothenburg. 1987. “The cone penetration test in sands: Part II, general inference of state.” Géotechnique 37 (3): 285–299. https://doi.org/10.1680/geot.1987.37.3.285.
Benz, M. A. 2009. “Mesures dynamiques lors du battage du pénétromètre Panda 2.” Ph.D. thesis, Dept. of Civil Engineering, Univ. Blaise Pascal.
Boulanger, R. W. 2003. “High overburden stress effects in liquefaction analyses.” J. Geotech. Geoenviron. Eng. 129 (12): 1071–1082. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1071).
Boulanger, R. W., and I. M. Idriss. 2014. CPT and SPT based liquefaction triggering procedures. Davis, CA: Univ. of California.
Butlanska, J., M. Arroyo, and A. Gens. 2010. “Virtual calibration chamber CPT tests on Ticino sand.” In Vol. 2 of Proc., 2nd Int. Symp. on Cone Penetration Testing, edited by P. Robertson and P. Mayne, 217–224. Huntington Beach, CA: Gregg Drilling & Testing.
Cassan, M. 1988. “Les essais in situ en mécanique des sols.” In Volume 1: Réalisation et interpretation. Paris: Eyrolles.
Chaigneau, L. 2001. “Caractérisation des milieux granulaires de surface a l’aide d’un pénétromètre.” Ph.D. thesis, Dept. of Civil Engineering, Université Blaise Pascal.
da Silva, W. M., A. Bianchini, and C. A. da Cunha. 2016. “Modeling and correction of soil penetration resistance for variations in soil moisture and soil bulk density.” Eng. Agric. 36 (3): 449–459. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n3p449-459/2016.
Deger, T. 2014. “Overburden stress normalization and rod length corrections for the Standard Penetration Test (SPT).” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of California, Berkeley.
Espinace, R., G. Villavicencio, and J. C. Torrejon. 2016. “Últimos avances en el control operacional de los depósitos de relave con la tecnología Panda. Aplicación en Chile.” In Proc., IX Congreso Chileno de Ingeniería Geotécnica. Valdivia, Chile: Universidad Austral de Chile.
Fredlund, D. G., H. Rahardjo, and M. D. Fredlund. 2012. Unsaturated soil mechanics in engineering practice. Hoboken, NJ: Wiley.
Gansonré, Y., P. Breul, C. Bacconnet, M. Benz, and R. Gourvès. 2019. “Prediction of in-situ dry unit weight considering chamber boundary effects on lateritic soils using Panda® penetrometer.” Int. J. Geotech. Eng. 1–7. https://doi.org/10.1080/19386362.2019.1698211.
García, M. G., M. A. Benz, G. Villavicencio, and R. Gourvès. 2016. “Desarrollo de una metodología de cálculo para el dimensionamiento de fundaciones superficiales mediante penetrómetro dinámico Panda.” In Proc., IX Congreso Chileno de Ingeniería Geotécnica. Valdivia, Chile: Universidad Austral de Chile.
Ghafghazi, M. G. 2011. “Towards comprehensive interpretation of the state parameter from cone penetration testing in cohesionless soils.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of British Columbia.
Gibbs, H. J., and W. G. Holtz. 1957. “Research on determining the density of sands by spoon penetration testing.” In Vol. 1 of Proc., 4th Int. Conf. on Soil Mechanics Foundation Engineering, 35–39. Washington, DC: United States Bureau of Reclamation.
Gourvès, R., and R. Barjot. 1995. “The Panda ultralight dynamic penetrometer.” In Vol. 3 of Proc., 11th European Conf. on Soil Mechanics Foundation. Engineering, 83–88. Copenhagen, Denmark: Danish Geotechnical Society.
Hsu, H.-H., and A.-B. Huang. 1999. “Calibration of cone penetration test in sand.” In Vol. 23 of Proc., National Science Council, 579–590. Washington, DC: National Science and Technology Council.
Huang, A.-B., and H.-H. Hsu. 2005. “Cone penetration tests under simulated field conditions.” Géotechnique 55 (5): 345–354. https://doi.org/10.1680/geot.2005.55.5.345.
INN (Instituto Nacional de Normalización). 2012. Tailings deposits—Control of compaction with light dynamic penetrometer. Nch 3261-12. Santiago, Chile: INN.
Jamiolkowski, M., C. C. Ladd, J. T. Germaine, and R. Lancelotta. 1985. “New developments in field and laboratory testing of soils.” In Vol. 1 of Proc., 11th Int. Conf. on Soil Mechanics and Foundation Engineering, 57–153. Rotterdam, Netherlands: A.A. Balkema.
Jamiolkowski, M., D. C. F. Lo Presti, and M. Manassero. 2003. “Evaluation of relative density and shear strength of sands from CPT and DMT.” In Soil behavior and soft ground construction, edited by J. T. Germaine, T. C. Sheahan, and R. V. Whitman, 201–238. Reston, VA: ASCE.
Jardine, R., B. Zhu, P. Foray, and C. P. Dalton. 2009. “Experimental arrangements for the measurements of soil stresses around a displacement pile.” Soils Found. 49 (5): 661–673. https://doi.org/10.3208/sandf.49.661.
Kahramanoglu, K. 2019. “Development and verification of a miniature cone penetration test.” M.S. thesis, Dept. of Civil and Environmental Engineering, Colorado State Univ.
Kayen, R. E., J. K. Mitchell, R. B. Seed, A. Lodge, S. Nishio, and R. Coutinho. 1992. “Evaluation of SPT-, CPT-, and shear wave-based methods for liquefaction potential assessment using Loma Prieta data.” In Vol. 1 of Proc., 4th Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, edited by M. Hamada and T. O’Rourke, 177–204. Buffalo, NY: National Center for Earthquake Engineering Research.
Liao, S. S. C., and R. V. Whitman. 1986. “Overburden correction factor for SPT in sand.” J. Geotech. Geoenviron. Eng. 112 (3): 342. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(373).
Lins, Y., T. Schanz, and D. Fredlund. 2009. “Modified pressure plate apparatus and column testing device for measuring SWCC of sand.” Geotech. Test. J. 32 (5): 450–464. https://doi.org/10.1520/GTJ101318.
Lunne, T., and H. P. Christoffersen. 1983. “Interpretation of cone penetrometer data for offshore sands.” In Vol. 1 of Proc., of 15th Offshore Technology Conf., 181–192. Houston: Offshore Technology Conference.
Marcuson, W. F., and W. A. Bieganousky. 1977. “SPT and relative density in coarse sands.” J. Geotech. Geoenviron. Eng. 11 (103): 128641761. https://doi.org/10.1016/0148-9062(78)90014-1.
Mayne, P. W., and H. Kulhawy. 1991. “Calibration chamber database and boundary effects correction for CPT data.” In Proc., 1st Int. Symp. on Calibration Chamber Testing, 257–264. New York: Elsevier.
Mitchell, J. K., and D.-J. Tseng. 1990. “Assessment of liquefaction potential by cone penetration resistance.” In Vol. 2 of Proc., H. Bolton Seed Memorial Symp., 335–350. Vancouver, BC: Bitech.
Moraes, M. T., H. Debiasi, J. C. Franchini, and V. R. Silva. 2012. “Correction of resistance to penetration by pedofunctions and a reference soil water.” Rev. Bras. Cienc. Solo. 36 (6): 1704–1713. https://doi.org/10.1590/S0100-06832012000600004.
Moss, R. E., R. B. Seed, and R. S. Olsen. 2006. “Normalizing the CPT for overburden stress.” J. Geotech. Geoenviron. Eng. 132 (3): 378–387. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(378).
Mujtaba, H., K. Farooq, N. Sivakugan, and B. M. Das. 2018. “Evaluation of relative density and friction angle based on SPT-N values.” KSCE J. Civ. Eng. 22: 572–581. https://doi.org/10.1007/s12205-017-1899-5.
Olsen, R. S., and J. K. Mitchell. 1995. “CPT stress normalization and prediction of soil classification.” In Proc., Int. Symp. on Cone Penetration Testing, 257–262. Linkoping, Sweeden: Swedish Geotechnical Society.
Paikowsky, S., et al. 2004. Load and resistance factor design (LRFD) for deep foundations. Washington, DC: Transportation Research Board.
Parkin, A. K. 1988. “The calibration of cone penetrometers.” In Proc. First Int. Symp. on Penetration Testing, 221–243. Rotterdam, Netherlands: A.A. Balkema.
Parkin, A. K., and T. Lunne. 1982. “Boundary effects in the laboratory calibration of a cone penetrometer for sand.” In Vol. 2 of Proc., 2nd European Symp. on Penetration Testing, 761–768. Rotterdam, Netherlands: A.A. Balkema.
Peck, R. B., W. E. Hanson, and T. H. Thornburn. 1974. Foundation engineering. 2nd ed. New York: Wiley.
Pournaghiazar, M., A. R. Russell, and N. Khalili. 2012. “Linking cone penetration resistances measured in calibration chambers and the field.” Geotech. Lett. 2 (2): 29–35. https://doi.org/10.1680/geolett.11.00040.
Reid, D., et al. 2020. “Results of a critical state line testing round robin programme.” Géotechnique. https://doi.org/10.1680/jgeot.19.P.373.
Robertson, P. K. 2010. “Soil behaviour type from the CPT: An update.” In Vol. 2 of Proc., 2nd Int. Symp. on Cone Penetration Testing, edited by P. Robertson and P. Mayne, 575–583. Huntington Beach, CA: Gregg Drilling & Testing.
Ross, C. A., P. Y. Thompson, W. A. Charlie, and D. O. Doehring. 1989. “Transmission of pressure waves in partially saturated soils.” Exp. Mech. 29 (1): 80–83. https://doi.org/10.1007/BF02327786.
Sadrekarimi, A. 2016. “Evaluation of CPT-based characterization methods for loose to medium-dense sands.” Soils Found. 56 (3): 460–472. https://doi.org/10.1016/j.sandf.2016.04.012.
Salgado, R. 1993. “Analysis of penetration resistance in sands.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of California at Berkeley.
Salgado, R., R. W. Boulanger, and J. K. Mitchell. 1997a. “Lateral stress effects on CPT liquefaction resistance correlations.” J. Geotech. Geoenviron. Eng. 123 (8): 726–735. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:8(726).
Salgado, R., J. K. Mitchell, and M. Jamiolkowski. 1997b. “Cavity expansion and penetration resistance in sand.” J. Geotech. Geoenviron. Eng. 123 (4): 878–888. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(344).
Salgado, R., J. K. Mitchell, and M. Jamiolkowski. 1998. “Calibration chamber size effects on penetration resistance in sand.” J. Geotech. Geoenviron. Eng. 124 (9): 878–888. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(878).
Sanglerat, G. 1972. “The penetrometer and soil exploration.” In Vol. 1 of Developments in geotechnical engineering. New York: Elsevier Publishing Company.
Schnaid, F., and G. T. Houlsby. 1991. “An assessment of chamber size effects in the calibration of in-situ test in sand.” Geotech. Lett. 41 (3): 437–445. https://doi.org/10.1680/geot.1991.41.3.437.
Seed, H. B. 1979. “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes.” J. Geotech. Eng. 105 (2): 127497171. https://doi.org/10.1061/AJGEB6.0000768.
Seed, H. B., I. Arango, and C. K. Chan. 1976. Evaluation of soil liquefaction potential for level ground during earthquakes. A summary report. El Segundo, CA: Agbabian Associates.
Shahien, M. M. 2016. “Fines Content correction factors for SPT N values - Liquefaction resistance correlation.” In Vol. 5 of Proc., 5th Int. Conf. on Geotechnical and Geophysical Site Characterisation, 663–668, edited by B. Lehane, H. E. Acosta-Martínez, and R. Kelly. Sydney: Australian Geomechanics Society.
Sheng, D., A. Zhou, and D. G. Fredlund. 2011. “Shear strength criteria for unsaturated soils.” Geotech. Geol. Eng. 29 (2): 145–159. https://doi.org/10.1007/s10706-009-9276-x.
Skempton, A. W. 1986. “Standard penetration test procedures and the effects in sands of verburden pressure, relative density, particle size, ageing and overconsolidation.” Géotechnique 36 (3): 425–447. https://doi.org/10.1680/geot.1986.36.3.425.
Teng, W. C. 1962. Foundation design. Upper Saddle River, NJ: Prentice-Hall.
Tien, H. J. 1990. “A literature study of the arching effect.” M.S. dissertation, Dept. of Civil and Environmental Engineering, Massachussetts Institute of Technology.
Tokimatsu, K., and Y. Yoshimi. 1983. “Empirical correlation of soil liquefaction based on SPT N-value and fines content.” Soils. Found. 23 (4): 56–74. https://doi.org/10.3208/sandf1972.23.4_56.
Torres-Cruz, L. A., and J. Santamarina. 2020. “The critical state line of non-plastic tailings.” Can. Geotech. J. 57 (10): 1508–1517. https://doi.org/10.1139/cgj-2019-0019.
Villavicencio, A. G., P. Breul, C. Bacconnet, D. Boissier, and A. R. Espinace. 2011. “Estimation of the variability of tailings dams properties in order to perform probabilistic assessment.” Geotech. Geol. Eng. 29 (6): 1073–1084. https://doi.org/10.1007/s10706-011-9438-5.
Villavicencio, A. G., P. Breul, C. Bacconnet, A. Fourie, and A. R. Espinace. 2016. “Liquefaction potential of sand tailings dams evaluated using a probabilistic interpretation of estimated in-situ relative density.” Rev. Constr. 15 (2): 9–18. https://doi.org/10.4067/S0718-915X2016000200001.
Villavicencio, G. 2009. “Méthodologie pour évaluer la stabilité mécanique des barrages de résidus miniers.” Ph.D. thesis, Dept. of Civil Engineering, Univ. Blaise Pascal.
Villavicencio, G., P. Breul, R. Espinace, and P. Valenzuela. 2012. “Tailings dams compaction control with light penetrometer, considering material and structural variability.” Rev. Constr. 11 (1): 119–133. https://doi.org/10.4067/S0718-915X2012000100011.
Wesley, L. D. 2002. “Interpretation of calibration chamber tests involving cone penetrometers in sands.” Géotechnique 52 (4): 289–293. https://doi.org/10.1680/geot.2002.52.4.289.
Wrana, B. 2015. “Pile load capacity—Calculation methods.” Stud. Geotech. Mech. 37 (4): 83–93. https://doi.org/10.1515/sgem-2015-0048.
Youd, T. L., and I. M. Idriss, eds. 1997. Proceedings of the NCEER Workshop on evaluation of liquefaction resistance of soils. Buffalo, NY: National Center for Earthquake Engineering Research.
Zhou, S. 1997. “Caractérisation des sols de surface a l’aide du pénétromètre dynamique léger a énergie variable type Panda.” Ph.D. thesis, Dept. of Civil Engineering, Univ. Blaise Pascal.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 7July 2021

History

Received: Jul 8, 2019
Accepted: Feb 5, 2021
Published online: May 11, 2021
Published in print: Jul 1, 2021
Discussion open until: Oct 11, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Grupo de Geotecnia, Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile (corresponding author). ORCID: https://orcid.org/0000-0002-5342-0063. Email: [email protected]
Gonzalo Suazo [email protected]
Assistant Professor, School of Civil Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile. Email: [email protected]
Ricardo Zuñiga [email protected]
Master of Science, School of Civil Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile. Email: [email protected]
Pamela Valenzuela [email protected]
Associate Professor, Grupo de Geotecnia, Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • The Use of Lightweight Penetrometer PANDA for the Compaction Control of Classified Sand Tailings Dams, Minerals, 10.3390/min12111467, 12, 11, (1467), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share