Technical Papers
Nov 28, 2020

A py Model for Large Diameter Monopiles in Sands Subjected to Lateral Loading under Static and Long-Term Cyclic Conditions

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 2

Abstract

The design of large diameter monopiles subjected to cyclic lateral loading is of interest in many applications, such as, for example, in the offshore wind energy industry. Engineering design methods to estimate the deflection of these structures are required for this purpose. In the present work, a py model for large diameter monopiles subjected to lateral loading is proposed. The model considers a pile in cohesionless soil subjected to static and long-term cyclic loading. Its formulation features the consideration of nonlinear relations for the ultimate soil resistance pu and the initial subgrade modulus Epy0 among the soil depth and a cyclic factor that accounts for the effect of the soil density and loading amplitude. A relation is also proposed to account for a base shear force at the tip of the monopile. The proposed relations were employed and solved under the beam on nonlinear Winkler foundation (BNWF) approach and were adjusted to simulate a number of three-dimensional (3D) finite-element (FE) models accurately, accounting for variations on pile geometry, soil properties, and loading conditions. In the end, the performance of the proposed relations was evaluated through the comparison with a field test and a centrifuge test.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors appreciate the financial support given by COLCIENCIAS (Colombia) for the project with code 1215748-59323 from the convocation 748-2016.

References

Abdel-Rahman, K., and M. Achmus. 2005. “Finite element modelling of horizontally loaded monopile foundations for offshore wind energy converters in Germany.” In Proc., Int. Symp. on Frontiers in Offshore Geotechnics, ISFOG 2005. London: Taylor & Francis.
Achmus, M., K. Abdel-Rahman, and Y. S. Kuo. 2007. “Numerical modelling of large diameter steel piles under monotonic and cyclic horizontal loading.” In Proc., 10th Int. Symp. on Numerical Models in Geomechanics NUMOG 10, 453–459. London: Taylor & Francis.
Achmus, M., Y. Kuo, and K. Abdel-Rahman. 2009. “Behavior of monopile foundations under cyclic lateral load.” Comput. Geotech. 36 (5): 725–735. https://doi.org/10.1016/j.compgeo.2008.12.003.
Adams, J. I., and H. S. Radhakrishna. 1973. “The lateral capacity of deep augured footings.” In Proc., 8th Int. Conf. on Soil Mechanics and Foundation Engineering. Moscow: USSR National Society for Soil Mechanics and Foundation Engineering.
Ahmed, S. S., and B. Hawlader. 2016. “Numerical analysis of large-diameter monopiles in dense sand supporting offshore wind turbines.” Int. J. Geomech. 16 (5): 04016018. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000633.
API (American Petroleum Institute). 2014. Recommended practice for planning, designing and constructing fixed offshore platforms: Working stress design. Washington, DC: API.
Arshad, M., and B. C. O’Kelly. 2017. “Model studies on monopile behavior under long-term repeated lateral loading.” Int. J. Geomech. 17 (1): 04016040. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000679.
ASTM. 2016a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253-16e1. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254-16. West Conshohocken, PA: ASTM.
Barton, Y. O. 1982. “Laterally loaded model piles in sand: Centrifuge tests and finite element analyses.” Ph.D. thesis, Dept. of Engineering, Univ. of Cambridge.
Bauer, E. 1992. “Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung.” [In German.] Ph.D. thesis, Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe.
Bauer, E. 1996. “Calibration of a comprehensive hypoplastic model for granular materials.” Soils Found. 36 (1): 13–26. https://doi.org/10.3208/sandf.36.13.
Bouzid, D. A. 2018. “Numerical investigation of large-diameter monopiles in sands: Critical review and evaluation of both API and newly proposed p-y curves.” Int. J. Geomech. 18 (11): 04018141. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001204.
Broms, B. B. 1964. “Lateral resistance of piles in cohesionless soils.” J. Soil Mech. Found. Div. 90 (3): 123–156.
Burd, H. J., et al. 2020. “PISA design model for monopiles for offshore wind turbines: Application to a marine sand.” Géotechnique 70 (11): 1048–1066. https://doi.org/10.1680/jgeot.18.P.277.
Byrne, B. W., et al. 2017. “PISA: New design methods for offshore wind turbine monopiles.” In Proc., Society for Underwater Technology Offshore Site Investigation and Geotechnics: 8th Int. Conf. on “Smarter Solutions for Future Offshore Developments”, 142–161. London: Society for Underwater Technology.
Chari, T. R., and G. G. Meyerhof. 1983. “Ultimate capacity of rigid single piles under inclined loads in sand.” Can. Geotech. J. 20 (4): 849–854. https://doi.org/10.1139/t83-091.
Chen, R.-P., Y.-X. Sun, B. Zhu, and W. D. Guo. 2015. “Lateral cyclic pile–soil interaction studies on a rigid model monopile.” Proc. Inst. Civ. Eng. Geotech. Eng. 168 (2): 120–130. https://doi.org/10.1680/geng.14.00028.
Choi, J. I., M. M. Kim, and S. J. Brandenberg. 2015. “Cyclic p-y plasticity model applied to pile foundations in sand.” J. Geotech. Geoenviron. Eng. 141 (5): 04015013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001261.
Choo, Y. W., and D. Kim. 2016. “Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: Centrifuge tests.” J. Geotech. Geoenviron. Eng. 142 (1): 04015058. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001373.
Cox, W. R., L. C. Reese, and B. R. Grubbs. 1974. “Field testing of laterally loaded piles in sand.” In Proc., OTC-2079-MS. Houston: Offshore Technology Conference.
Damgaard, M., M. Bayat, L. V. Andersen, and L. B. Ibsen. 2014. “Assessment of the dynamic behaviour of saturated soil subjected to cyclic loading from offshore monopile wind turbine foundations.” Comput. Geotech. 61 (Sep): 116–126. https://doi.org/10.1016/j.compgeo.2014.05.008.
DNV-GL-AS. 2016. DNVGL-ST-0126: Support structures for wind turbines. Oslo, Norway: Det Norske Veritas Group.
Doherty, P., W. Li, K. Gavin, and B. Casey. 2012. “Field lateral load test on monopile in dense sand.” In Proc., SUT-OSIG-12-49. London: Society of Underwater Technology.
Doherty, P., G. Spagnoli, and M. Doherty. 2020. “Laboratory investigations to assess the feasibility of employing a novel mixed-in-place offshore pile in calcareous deposits.” Ships Offshore Struct. 15 (1): 29–38. https://doi.org/10.1080/17445302.2015.1056579.
Dührkop, J. 2009. “Zum Einfluss von Aufweitungen und zyklischen Lasten auf das Verformungsverhalten lateral beanspruchter Pfähle in Sand.” [In German.] Ph.D. thesis, Institut für Geotechnik und Baubetrieb, Technische Universität Hamburg-Harburg.
Duque, J., W. Fuentes, and J. Barros. Forthcoming. “Effect of grain size distribution on maximum and minimum void ratios of granular soils.” Acta Geotech. Slovenica.
Fleming, K., A. Weltman, M. Randolph, and K. Elson. 2009. Piling engineering. Milton Park, UK: Taylor & Francis.
Fuentes, W., M. Hadzibeti, and T. Triantafyllidis. 2016. “Constitutive model for clays under the ISA framework.” In Holistic simulation of geotechnical installation processes: Benchmarks and simulations, edited by T. Triantafyllidis, 115–129. Cham, Switzerland: Springer.
Fuentes, W., and C. Lascarro. 2019. “On the simulation of the cyclic mobility effect with an ISA-hypoplastic model.” In Desiderata geotechnica, edited by W. Wu, 32–39. Cham, Switzerland: Springer.
Fuentes, W., T. Triantafyllidis, and C. Lascarro. 2017. “Evaluating the performance of an ISA-hypoplasticity constitutive model on problems with repetitive loading.” In Vol. 82 of Holistic simulation of geotechnical installation processes: Theoretical results and applications, edited by T. Triantafyllidis, 341–362. Cham, Switzerland: Springer.
Fuentes, W., T. Wichtmann, M. Gil, and C. Lascarro. 2020. “ISA-hypoplasticity accounting for cyclic mobility effects for liquefaction analysis.” Acta Geotech. 15 (6): 1513–1531. https://doi.org/10.1007/s11440-019-00846-2.
Gupta, B. K., and D. Basu. 2016. “Response of laterally loaded rigid monopiles and poles in multi-layered elastic soil.” Can. Geotech. J. 53 (8): 1281–1292. https://doi.org/10.1139/cgj-2015-0520.
Hansen, J. B. 1961. The ultimate resistance of rigid piles against transversal forces. Copenhagen, Denmark: Danish Geotechnical Institute.
Hearn, E. N., and L. Edgers. 2010. “Finite element analysis of an offshore wind turbine monopile.” In GeoFlorida 2010: Advances in Analysis, Modeling & Design, Geotechnical Special Publication 199, edited by D. O. Fratta, A. J. Puppala, and B. Muhunthan, 1857–1865. Reston, VA: ASCE.
Herle, I., and G. Gudehus. 1999. “Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies.” Mech. Cohesive-Frictional Mater. 4 (5): 461–486. https://doi.org/10.1002/(SICI)1099-1484(199909)4:5%3C461::AID-CFM71%3E3.0.CO;2-P.
Jamiolkowski, M., D. C. F. Lo Presti, and M. Manassero. 2003. “Evaluation of relative density and shear strength of sands from CPT and DMT.” In Soil Behavior and Soft Ground Construction, Geotechnical Special Publication 119, edited by J. T. Germaine, T. C. Sheahan, and R. V. Whitman, 201–238. Reston, VA: ASCE.
Jonkman, J., S. Butterfield, W. Musial, and G. Scott. 2009. Definition of a 5-MW reference wind turbine for offshore system development. Golden, CO: National Renewable Energy Laboratory.
Joo, J. S. 1985. “Behaviour of large scale rigid model piles under inclined loads in sand.” Master’s thesis, Faculty of Engineering and Applied Science, Memorial Univ. of Newfoundland.
Kallehave, D., C. L. Thilsted, and M. A. Liingaard. 2012. “Modification of the API p-y formulation of initial stiffness of sand.” In Proc., SUT-OSIG-12-50. London: Society of Underwater Technology.
Kézdi, Á. 1970. Handbuch der Bodenmechanik: Bodenmechanik im Erd-, Grund- und Strassenbau. [In German.] Berlin: VEB Verlag für Bauwesen.
Kim, J. H., Y. W. Choo, D. J. Kim, and D. S. Kim. 2016. “Miniature cone tip resistance on sand in a centrifuge.” J. Geotech. Geoenviron. Eng. 142 (3): 04015090. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001425.
Kirkwood, P. B., and S. K. Haigh. 2014. “Centrifuge testing of monopiles subject to cyclic lateral loading.” In Proc., Physical Modelling in Geotechnics—8th Int. Conf. on Physical Modelling in Geotechnics 2014, ICPMG 2014, 827–831. London: CRC Press.
Klinkvort, R. T., C. T. Leth, and O. Hededal. 2010. “Centrifuge modelling of a laterally cyclic loaded pile.” In Vol. 7 of Physical modelling in geotechnics, 959–964. Milton Park, UK: Taylor & Francis.
Kuo, Y.-S., M. Achmus, and K. Abdel-Rahman. 2012. “Minimum embedded length of cyclic horizontally loaded monopiles.” J. Geotech. Geoenviron. Eng. 138 (3): 357–363. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000602.
Lada, A., L. B. Ibsen, and G. Nicolai. 2014. The stiffness change and the increase in the ultimate capacity for a stiff pile resulting from a cyclic loading. Aalborg, Denmark: Dept. of Civil Engineering, Aalborg Univ.
Le, V. H. 2015. “Zum Verhalten von Sand unter zyklischer Beanspruchung mit Polarisationswechsel im Einfachscherversuch.” [In German.] Ph.D. thesis, Fakultät VI—Planen Bauen Umwelt, Technische Universität Berlin.
LeBlanc, C., B. Byrne, and G. T. Houlsby. 2010a. “Response of stiff piles to random two-way lateral loading.” Géotechnique 60 (9): 715–721. https://doi.org/10.1680/geot.09.T.011.
LeBlanc, C., G. T. Houlsby, and B. W. Byrne. 2010b. “Response of stiff piles in sand to long-term cyclic lateral loading.” Géotechnique 60 (2): 79–90. https://doi.org/10.1680/geot.7.00196.
Li, W., D. Igoe, and K. Gavin. 2015. “Field tests to investigate the cyclic response of monopiles in sand.” Proc. Inst. Civ. Eng. Geotech. Eng. 168 (5): 407–421. https://doi.org/10.1680/jgeen.14.00104.
Li, W., B. Zhu, and M. Yang. 2017. “Static response of monopile to lateral load in overconsolidated dense sand.” J. Geotech. Geoenviron. Eng. 143 (7): 04017026. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001698.
Mašín, D. 2019. Modelling of soil behaviour with hypoplasticity. Cham, Switzerland: Springer.
McAdam, R. A., et al. 2020. “Monotonic laterally loaded pile testing in a dense marine sand at Dunkirk.” Géotechnique 70 (11): 986–998. https://doi.org/10.1680/jgeot.18.PISA.004.
McGann, C. R., P. Arduino, and P. Mackenzie-Helnwein. 2011. “Applicability of conventional py relations to the analysis of piles in laterally spreading soil.” J. Geotech. Geoenviron. Eng. 137 (6): 557–567. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000468.
Meyerhof, G. G., and V. V. R. N. Sastry. 1985. “Bearing capacity of rigid piles under eccentric and inclined loads.” Can. Geotech. J. 22 (3): 267–276. https://doi.org/10.1139/t85-040.
Miner, M. A. 1945. “Cumulative damage in fatigue.” J. Appl. Mech. 12 (3): 159–164.
Murchison, J. M., and M. W. O’Neill. 1984. “Evaluation of p-y relationships in cohesionless soils: Analysis and design of pile foundations.” In Proc., Symp. in Conjunction with the ASCE National Convention, 174–191. Reston, VA: ASCE.
Murphy, G., D. Igoe, P. Doherty, and K. Gavin. 2018. “3D FEM approach for laterally loaded monopile design.” Comput. Geotech. 100 (Aug): 76–83. https://doi.org/10.1016/j.compgeo.2018.03.013.
Niemunis, A. 2003. “Extended hypoplastic models for soils.” Habilitation thesis, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum.
Niemunis, A., and I. Herle. 1997. “Hypoplastic model for cohesionless soils with elastic strain range.” Mech. Cohesive-Frictional Mater. 2 (4): 279–299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4%3C279::AID-CFM29%3E3.0.CO;2-8.
Niemunis, A., T. Wichtmann, and T. Triantafyllidis. 2005. “A high-cycle accumulation model for sand.” Comput. Geotech. 32 (4): 245–263. https://doi.org/10.1016/j.compgeo.2005.03.002.
Poblete, M., W. Fuentes, and T. Triantafyllidis. 2016. “On the simulation of multidimensional cyclic loading with intergranular strain.” Acta Geotech. 11 (6): 1263–1285. https://doi.org/10.1007/s11440-016-0492-2.
Prasad, Y. V. S. N., and T. R. Chari. 1999. “Lateral capacity of model rigid piles in cohesionless soils.” Soils Found. 39 (2): 21–29. https://doi.org/10.3208/sandf.39.2_21.
Qin, H., and W. D. Guo. 2016. “Response of static and cyclic laterally loaded rigid piles in sand.” Mar. Georesour. Geotechnol. 34 (2): 138–153. https://doi.org/10.1080/1064119X.2014.979961.
Reese, L., and W. Van Impe. 2011. Single piles and pile groups under lateral loading. Milton Park, UK: Taylor & Francis.
Reese, L. C., W. R. Cox, and F. D. Koop. 1974. “Analysis of laterally loaded piles in sand.” In Proc., OTC-2080-MS. Houston: Offshore Technology Conference.
Robertson, P. K., and R. G. Campanella. 1983. “Interpretation of cone penetration tests. Part I: Sand.” Can. Geotech. J. 20 (4): 718–733. https://doi.org/10.1139/t83-078.
Sørensen, S. P. H. 2012. “Soil-structure interaction for non-slender, large-diameter offshore monopiles.” Ph.D. thesis, Dept. of Civil Engineering, Aalborg Univ.
Sørensen, S. P. H., L. B. Ibsen, and A. H. Augustesen. 2010. “Effects of diameter on initial stiffness of p-y curves for large-diameter piles in sand.” In Proc., Numerical Methods in Geotechnical Engineering: Proc., 7th European Conf. on Numerical Methods in Geotechnical Engineering, edited by T. Benz and S. Nordal, 907–912. Boca Raton, FL: CRC Press.
Staubach, P., and T. Wichtmann. 2020. “Long-term deformations of monopile foundations for offshore wind turbines studied with a high-cycle accumulation model.” Comput. Geotech. 124 (Aug): 103553. https://doi.org/10.1016/j.compgeo.2020.103553.
von Wolffersdorff, P. A. 1996. “A hypoplastic relation for granular materials with a predefined limit state surface.” Mech. Cohesive-Frictional Mater. 1 (3): 251–271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3%3C251::AID-CFM13%3E3.0.CO;2-3.
Westermann, K., H. Zachert, and T. Wichtmann. 2014a. “Vergleich von Ansätzen zur Prognose der Langzeitverformungen von OWEA-Monopilegründungen in Sand. Teil 1: Grundlagen der Ansätze und Parameterkalibration.” [In German.] Bautechnik 91 (5): 309–323. https://doi.org/10.1002/bate.201300094.
Westermann, K., H. Zachert, and T. Wichtmann. 2014b. “Vergleich von Ansätzen zur Prognose der Langzeitverformungen von OWEA-Monopilegründungen in Sand. Teil 2: Simulationen und Schlussfolgerungen.” [In German.] Bautechnik 91 (5): 324–332. https://doi.org/10.1002/bate.201400015.
Wichtmann, T. 2005. “Explicit accumulation model for non-cohesive soils under cyclic loading.” Ph.D. thesis, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum.
Wichtmann, T. 2016. “Soil behaviour under cyclic loading: Experimental observations, constitutive description and applications.” Habilitation thesis, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik am Karlsruher Institut für Technologie.
Wichtmann, T., A. Niemunis, and T. Triantafyllidis. 2008. “Prediction of long-term deformations for monopile foundations of offshore wind power plants.” In Proc., Geotechnics in Maritime Engineering: 11th Baltic Sea Geotechnical Conf. Gdańsk, Poland: Polish Committee on Geotechnics.
Wichtmann, T., and T. Triantafyllidis. 2016. “An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading. Part I: Tests with monotonic loading and stress cycles.” Acta Geotech. 11 (4): 739–761. https://doi.org/10.1007/s11440-015-0402-z.
Wiemann, J. K., K. Lesny, and W. Richwein. 2004. “Evaluation of pile diameter effects on soil-pile stiffness.” In Proc., 7th German Wind Energy Conf. DEWEK. Wilhelmshaven, Germany: DEWI GmbH.
Yang, M., R. Luo, and W. Li. 2018. “Numerical study on accumulated deformation of laterally loaded monopiles used by offshore wind turbine.” Bull. Eng. Geol. Environ. 77 (3): 911–921. https://doi.org/10.1007/s10064-017-1138-9.
Zachert, H., and T. Wichtmann. 2020. “Approaches for the design of foundations for offshore wind turbines.” In Recent developments of soil mechanics and geotechnics in theory and practice, edited by T. Triantafyllidis, 113–135. Cham, Switzerland: Springer.
Zhang, L., F. Silva, and R. Grismala. 2005. “Ultimate lateral resistance to piles in cohesionless soils.” J. Geotech. Geoenviron. Eng. 131 (1): 78–83. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(78).
Zhu, B., Y. X. Sun, R. P. Chen, W. D. Guo, and Y. Y. Yang. 2015. “Experimental and analytical models of laterally loaded rigid monopiles with hardening p-y curves.” J. Waterw. Port Coastal Ocean Eng. 141 (6): 04015007. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000310.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 2February 2021

History

Received: Jun 12, 2019
Accepted: Sep 9, 2020
Published online: Nov 28, 2020
Published in print: Feb 1, 2021
Discussion open until: Apr 28, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Manager of Housing and Urban Development, Dept. of Housing and Urban Development, Findeter, Calle 103 No. 19-20, Bogotá 110111, Colombia; formerly, Professor, Dept. of Civil and Environmental Engineering, Univ. del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia (corresponding author). ORCID: https://orcid.org/0000-0002-9281-3871. Email: [email protected]
Graduate Student, Dept. of Civil and Environmental Engineering, Univ. del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia. ORCID: https://orcid.org/0000-0001-8811-8385. Email: [email protected]
G. Rivillas [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share