Technical Papers
Mar 28, 2020

A Binary Packing Material–Based Procedure for Evaluating Soil Liquefaction Triggering during Earthquakes

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 146, Issue 6

Abstract

This paper presents a new approach to assess the liquefaction triggering of saturated sandy soils based on comprehensive laboratory datasets in conjunction with the concept of binary packing material for sandy soils. The equivalent skeleton void ratio (esk*) is used as an alternative state index for sandy soils with fines content (FC) less than a threshold value (FCth). To characterize the liquefaction triggering curve for the correlation between the cyclic resistance ratio (CRR15) in 15 cycles and the corrected shear-wave velocity (Vs1), a series of undrained cyclic triaxial tests as well as bender element tests have been performed on six types of saturated sandy soils. A remarkable finding of the laboratory investigation is that both CRR15 and Vs1 are virtually uniquely related with esk* for all six sandy soils. This finding is confirmed by the experimental data on CRR15 and on Vs1 for different sandy soils published in the literature. The parameters defining the relationships between CRR15 and esk* between Vs1 and esk* can be simply determined through a unique set of explicit expressions which incorporate some basic index properties of the host sand and fines. In this regard, the proposed procedure provides a significant advantage in the evaluation of liquefaction triggering of sandy soils in practice.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The financial support provided by the National Key Research and Development Program of China (2018YFC1504301), the Natural Science Foundation of China (51978334), and the Research Grants Council of Hong Kong (17206418) is gratefully acknowledged.

References

Ahmadi, M. M., and N. A. Paydar. 2014. “Requirements for soil-specific correlation between shear wave velocity and liquefaction resistance of sands.” Soil Dyn. Earthquake Eng. 57 (Feb): 152–163. https://doi.org/10.1016/j.soildyn.2013.11.001.
Akhila, M., K. Rangaswamy, and N. Sankar. 2019. “Undrained response and liquefaction resistance of sand–silt mixtures.” Geotech. Geol. Eng. 37 (4): 2729–2745. https://doi.org/10.1007/s10706-018-00790-0.
Amini, F., and G. Z. Qi. 2000. “Liquefaction testing of stratified silty sands.” J. Geotech. Geoenviron. Eng. 126 (3): 208–217. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(208).
Andrus, R. D., and K. H. Stokoe II. 2000. “Liquefaction resistance of soils from shear–wave velocity.” J. Geotech. Geoenviron. Eng. 126 (11): 1015–1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015).
ASTM. 2011. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for load controlled cyclic triaxial strength of soil. ASTM D5311/D5311M. West Conshohocken, PA: ASTM.
Baxter, C. D. P., A. S. Bradshaw, R. A. Green, and J. H. Wang. 2008. “Correlation between cyclic resistance and shear-wave velocity for providence silts.” J. Geotech. Geoenviron. Eng. 134 (1): 37–46. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(37).
Boulanger, R. W., and I. M. Idriss. 2006. “Liquefaction susceptibility criteria for silts and clays.” J. Geotech. Geoenviron. Eng. 132 (11): 1413–1426. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413).
Boulanger, R. W., and I. M. Idriss. 2012. “Probabilistic standard penetration test-based liquefaction triggering procedure.” J. Geotech. Geoenviron. Eng. 138 (10): 1185–1195. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000700.
Boulanger, R. W., M. W. Meyers, L. H. Mejia, and I. M. Idriss. 1998. “Behavior of a fine-grained soil during the Loma Prieta earthquake.” Can. Geotech. J. 35 (1): 146–158. https://doi.org/10.1139/t97-078.
Bray, J. D., and R. B. Sancio. 2006. “Assessment of the liquefaction susceptibility of fine-grained soils.” J. Geotech. Geoenviron. Eng. 132 (9): 1165–1177. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1165).
Cetin, K. O., R. B. Seed, R. E. Kayen, R. E. S. Moss, H. T. Bilge, M. Ilgac, and K. Chowdhury. 2018. “SPT-based probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard.” Soil Dyn. Earthquake Eng. 115 (Dec): 698–709. https://doi.org/10.1016/j.soildyn.2018.09.012.
Cetin, K. O., R. B. Seed, A. D. Kiureghian, K. Tokimatsu, L. F. Harder, R. E. Kayen, and R. E. S. Moss. 2004. “Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential.” J. Geotech. Geoenviron. Eng. 130 (12): 1314–1340. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314).
Chang, W. J., and M. L. Hong. 2008. “Effects of clay content on liquefaction characteristics of gap-graded clayey sands.” Soils Found. 48 (1): 101–114. https://doi.org/10.3208/sandf.48.101.
Chen, G. X., M. Y. Kong, K. Sara, W. Y. Chen, and X. J. Li. 2017. “Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database.” Bull. Eng. Geol. Environ. 78 (2): 1–13. https://doi.org/10.1007/s10064-017-1146-9.
Chen, G. X., Q. Wu, T. Sun, K. Zhao, E. Q. Zhou, L. Y. Xu, and Y. G. Zhou. 2018. “Cyclic behaviors of saturated sand gravel mixtures under undrained cyclic triaxial loading.” J. Earthquake Eng.. https://doi.org/10.1080/13632469.2018.1540370.
Chen, G. X., Q. Wu, Z. L. Zhou, W. J. Ma, W. Y. Chen, K. Sara, and J. Yang. 2020. “Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation.” Géotechnique. 70 (4): 317–331. https://doi.org/10.1680/jgeot.18.P.180.
Chen, G. X., L. Y. Xu, M. Y. Kong, and X. J. Li. 2015. “Calibration of a CRR model based on an expanded SPT-based database for assessing soil liquefaction potential.” Eng. Geol. 196 (Sep): 305–312. https://doi.org/10.1016/j.enggeo.2015.08.002.
Chen, G. X., D. F. Zhao, W. Y. Chen, and C. H. Juang. 2019. “Excess pore water pressure generation in cyclic undrained testing.” J. Geotech. Geoenviron. Eng. 145 (7): 04019022. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002057.
Chen, G. X., Z. L. Zhou, H. Pan, T. Sun, and X. J. Li. 2016. “The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range.” Eng. Geol. 204 (Apr): 77–93. https://doi.org/10.1016/j.enggeo.2016.02.008.
Dash, H. K., T. G. Sitharam, and B. A. Baudet. 2010. “Influence of non-plastic fines on the response of a silty sand to cyclic loading.” Soils Found. 50 (5): 695–704. https://doi.org/10.3208/sandf.50.695.
Dobry, R., and T. Abdoun. 2015. “Cyclic shear strain needed for liquefaction triggering and assessment of overburden pressure factor Kσ.” J. Geotech. Geoenviron. Eng. 141 (11): 04015047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001342.
Dobry, R., T. Abdoun, K. H. Stokoe II, R. E. S. Moss, M. Hatton, and H. El Ganainy. 2015. “Liquefaction potential of recent fills versus natural sands located in high-seismicity regions using shear-wave velocity.” J. Geotech. Geoenviron. Eng. 141 (3): 04014112. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001239.
Dobry, R., R. S. Ladd, F. Y. Yokel, R. M. Chung, and D. Powell. 1982. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method: NBS Building Science Series 138. Gaithersburg, MD: National Bureau of Standards.
Evans, M. D., and S. P. Zhou. 1995. “Liquefaction behavior of sand-gravel composites.” J. Geotech. Eng. 121 (3): 287–298. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:3(287).
Goudarzy, M., M. M. Rahman, D. Konig, and T. Schanz. 2016. “Influence of non-plastic fines content on maximum shear modulus of granular materials.” Soils Found. 56 (6): 973–983. https://doi.org/10.1016/j.sandf.2016.11.003.
Green, R. A., and G. A. Terri. 2005. “Number of equivalent cycles concept for liquefaction evaluations—Revisited.” J. Geotech. Geoenviron. Eng. 131 (4): 477–488. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(477).
Hsiao, D. H., V. T. A. Phan, Y. T. Hsieh, and H. Y. Kuo. 2015. “Engineering behavior and correlated parameters from obtained results of sand–silt mixtures.” Soil Dyn. Earthquake Eng. 77 (Oct): 137–151. https://doi.org/10.1016/j.soildyn.2015.05.005.
Huang, Y. T., A. B. Huang, Y. C. Kuo, and M. D. Tsai. 2004. “A laboratory study on the undrained strength of a silty sand from Central Western Taiwan.” Soil Dyn. Earthquake Eng. 24 (9–10): 733–743. https://doi.org/10.1016/j.soildyn.2004.06.013.
Idriss, I. M., and R. W. Boulanger. 2010. SPT-based liquefaction triggering procedures. Davis, CA: Center for Geotechnical Modeling, Univ. of California, Davis.
Kayen, R., R. E. S. Moss, E. M. Thompson, R. B. Seed, K. O. Cetin, A. D. Kiureghian, Y. Tanaka, and K. Tokimatsu. 2013. “Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential.” J. Geotech. Geoenviron. Eng. 139 (3): 407–419. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000743.
Kim, U., D. Kim, and L. Zhuang. 2016. “Influence of fines content on the undrained cyclic shear strength of sand-clay mixtures.” Soil Dyn. Earthquake Eng. 83 (Apr): 124–134. https://doi.org/10.1016/j.soildyn.2016.01.015.
Ku, C. S., C. H. Juang, C. W. Chang, and J. Ching. 2012. “Probabilistic version of the Robertson and Wride method for liquefaction evaluation: Development and application.” Can. Geotech. J. 49 (1): 27–44. https://doi.org/10.1139/t11-085.
Kuerbis, R. H. 1989. “The effect of gradation and fines content on the undrained loading response of sand.” B.A.Sc. thesis, Dept. of Civil Engineering, Univ. of British Columbia.
Lade, P. V., and J. A. Yamamuro. 1997. “Effects of nonplastic fines on static liquefaction of sands.” Can. Geotech. J. 34 (6): 918–928. https://doi.org/10.1139/t97-052.
Martin, G. R., W. D. L. Finn, and H. B. Seed. 1975. “Fundamentals of liquefaction under cyclic loading.” J. Geotech. Eng. Div. 101 (GT5): 423–438. https://doi.org/10.1016/0148-9062(75)92420-1.
Mohammadi, A., and A. Qadimi. 2015. “A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio.” Acta Geotech. 10 (5): 587–606. https://doi.org/10.1007/s11440-014-0318-z.
Moss, R. E. S., R. B. Seed, R. E. Kayen, J. P. Stewart, A. Der Kiureghian, and K. O. Cetin. 2006. “CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential.” J. Geotech. Geoenviron. Eng. 132 (8): 1032–1051. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(1032).
NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. State of the art and practice in the assessment of earthquake-induced soil liquefaction and its consequences. Washington, DC: National Academies Press.
Papadopoulou, A., and T. Tika. 2008. “The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands.” Soils Found. 48 (5): 713–725. https://doi.org/10.3208/sandf.48.713.
Payan, M., K. Senetakis, A. Khoshghalb, and N. Khalili. 2017. “Characterization of the small-strain dynamic behaviour of silty sands; contribution of silica non-plastic fines content.” Soil Dyn. Earthquake Eng. 102 (Nov): 232–240. https://doi.org/10.1016/j.soildyn.2017.08.008.
Polito, C. P., and J. R. Martin II. 2001. “Effects of nonplastic fines on the liquefaction resistance of sands.” J. Geotech. Geoenviron. Eng. 127 (5): 408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408).
Rahman, M. M., and S. R. Lo. 2008. “The prediction of equivalent granular steady state line of loose sand with fines.” Geomech. Geoeng. Int. J. 3 (3): 179–190. https://doi.org/10.1080/17486020802206867.
Rahman, M. M., S. R. Lo, and M. A. L. Baki. 2011. “Equivalent granular state parameter and undrained behaviour of sand–fines mixtures.” Acta Geotech. 6 (4): 183–194. https://doi.org/10.1007/s11440-011-0145-4.
Rahman, M. M., S. R. Lo, and C. T. Gnanendran. 2009. “Reply to the discussion by Wanatowski and Chu on ‘On equivalent granular void ratio and steady state behaviour of loose sand with fines.’” Can. Geotech. J. 46 (4): 483–486. https://doi.org/10.1139/T09-025.
Robertson, P. K. 2009. “Interpretation of cone penetration tests–A unified approach.” Can. Geotech. J. 46 (11): 1337–1355. https://doi.org/10.1139/T09-065.
Robertson, P. K., and C. E. Wride. 1998. “Evaluating cyclic liquefaction potential using the cone penetration test.” Can. Geotech. J. 35 (3): 442–459. https://doi.org/10.1139/t98-017.
Rodriguez-Arriaga, E., and R. A. Green. 2018. “Assessment of the cyclic strain approach for evaluating liquefaction triggering.” Soil Dyn. Earthquake Eng. 113 (Oct): 202–214. https://doi.org/10.1016/j.soildyn.2018.05.033.
Salgado, R., P. Bandini, and A. Karim. 2000. “Shear strength and stiffness of silty sand.” J. Geotech. Geoenviron. Eng. 126 (5): 451–462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451).
Seed, H. B. 1979. “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes.” J. Geotech. Eng. Div. 105 (2): 201–255. https://doi.org/10.1016/0148-9062(79)91243-9.
Seed, H. B., and I. M. Idriss. 1971. “Simplified procedure for evaluating soil liquefaction potential.” J. Soil Mech. Found. Div. 97 (SM9): 1249–1273.
Seed, H. B., and W. H. Peacock. 1971. “Test procedures for measuring soil liquefaction characteristics.” J. Soil Mech. Found. Div. 97 (SM8): 1099–1199.
Seed, H. B., K. Tokimatsu, L. F. Harder, and R. M. Chung. 1985. “Influence of SPT procedures in soil liquefaction resistance evaluations.” J. Geotech. Eng. 111 (12): 1425–1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425).
Seed, R. B., et al. 2003. Recent advances in soil engineering: A unified and consistent framework. Berkeley, CA: Pacific Earthquake Engineering Research.
Silver, M. L., and H. B. Seed. 1971. “Deformation characteristics of sands under cyclic loading.” J. Soil Mech. Found. Div. 97 (8): 1081–1098.
Sitharam, T. G., H. K. Dash, and R. S. Jakka. 2013. “Postliquefaction undrained shear behavior of sand-silt mixtures at constant void ratio.” Int. J. Geomech. 13 (4): 421–429. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000225.
Stamatopoulos, C. A. 2010. “An experimental study of the liquefaction strength of silty sands in terms of the state parameter.” Soil Dyn. Earthquake Eng. 30 (8): 662–678. https://doi.org/10.1016/j.soildyn.2010.02.008.
Thevanayagam, S. 2000. “Liquefaction potential and undrained fragility of silty sands.” In Proc., 12th World Conf. Earthquake Engineering CD-ROM. Wellington, New Zealand: New Zealand Society for Earthquake Engineering.
Thevanayagam, S., T. Shenthan, S. Mohan, and J. Liang. 2002. “Undrained fragility of clean sands, silty sands, and sandy silts.” J. Geotech. Geoenviron. Eng. 128 (10): 849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
Tokimatsu, K., T. Yamazako, and Y. Yoshimi. 1986. “Soil liquefaction evaluations by elastic shear moduli.” Soils Found. 26 (1): 25–35. https://doi.org/10.3208/sandf1972.26.25.
Wang, J. H., K. Moran, and C. D. P. Baxter. 2006. “Correlation between cyclic resistance ratios of intact and reconstituted offshore saturated sands and silts with the same shear wave velocity.” J. Geotech. Geoenviron. Eng. 132 (12): 1574–1580. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:12(1574).
Wichtmann, T., M. A. Navarrete Hernández, and T. Triantafyllidis. 2015. “On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand.” Soil Dyn. Earthquake Eng. 69 (Feb): 103–114. https://doi.org/10.1016/j.soildyn.2014.10.017.
Xenaki, V. C., and G. A. Athanasopoulos. 2003. “Liquefaction resistance of sand–silt mixtures: An experimental investigation of the effect of fines.” Soil Dyn. Earthquake Eng. 23 (3): 1–12. https://doi.org/10.1016/S0267-7261(02)00210-5.
Xie, J. F. 1984. “Some comments on the formula for estimating the liquefaction of sand in revised seismic design code.” [In Chinese.] Earthquake Eng. Eng. Vib. 4 (2): 95–126.
Yang, J., and X. Q. Gu. 2013. “Shear stiffness of granular material at small-strain: Does it depend on grain size?” Géotechnique 63 (2): 165–179. https://doi.org/10.1680/geot.11.P.083.
Yang, J., and X. Liu. 2016. “Shear wave velocity and stiffness of sand: The role of non-plastic fines.” Géotechnique 66 (6): 500–514. https://doi.org/10.1680/jgeot.15.P.205.
Yang, J., S. Savidis, and M. Roemer. 2004. “Evaluating liquefaction strength of partially saturated sand.” J. Geotech. Geoenviron. Eng. 130 (9): 975–979. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(975).
Yang, J., and H. Y. Sze. 2011a. “Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions.” Géotechnique 61 (1): 59–73. https://doi.org/10.1680/geot.9.P.019.
Yang, J., and H. Y. Sze. 2011b. “Cyclic strength of sand under sustained shear stress.” J. Geotech. Geoenviron. Eng. 137 (12): 1275–1285. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000541.
Yang, J., L. M. Wei, and B. B. Dai. 2015. “State variables for silty sands: Global void ratio or skeleton void ratio?” Soils Found. 55 (1): 99–111. https://doi.org/10.1016/j.sandf.2014.12.008.
Youd, T. L., et al. 2001. “Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998  NCEER/NSF workshops on evaluation of liquefaction resistance of soils.” J. Geotech. Geoenviron. Eng. 127 (10): 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817).
Zhuang, H. Y., R. Wang, G. X. Chen, Y. Miao, and K. Zhao. 2018. “Shear modulus reduction of saturated sand under large liquefaction-induced deformation in cyclic torsional shear tests.” Eng. Geol. 240 (Jun): 110–122. https://doi.org/10.1016/j.enggeo.2018.04.018.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 6June 2020

History

Received: Apr 6, 2019
Accepted: Jan 14, 2020
Published online: Mar 28, 2020
Published in print: Jun 1, 2020
Discussion open until: Aug 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Guoxing Chen [email protected]
Professor, Institute of Geotechnical Engineering, Nanjing Tech Univ., Nanjing 210009, China; Director, Civil Engineering and Earthquake Disaster Prevention Center of Jiangsu Province, Nanjing 210009, China (corresponding author). Email: [email protected]
Qi Wu
Ph.D. Student, Institute of Geotechnical Engineering, Nanjing Tech Univ., Nanjing 210009, China.
Kai Zhao
Associate Professor, Institute of Geotechnical Engineering, Nanjing Tech Univ., Nanjing 210009, China.
Zhifu Shen
Associate Professor, Institute of Geotechnical Engineering, Nanjing Tech Univ., Nanjing 210009, China.
Jun Yang, F.ASCE
Professor, Dept. of Civil Engineering, Univ. of Hong Kong, Hong Kong, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share