Discussions and Closures
Feb 20, 2020

Closure to “Effect of Particle Shape on Stress-Dilatancy Responses of Medium-Dense Sands” by Yang Xiao, Leihang Long, T. Matthew Evans, Hai Zhou, Hanlong Liu, and Armin W. Stuedlein

This article is a reply.
VIEW THE ORIGINAL ARTICLE
Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 146, Issue 5
First page of PDF

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the National Science Foundation of China (Grant No. 51922024, Grant No. 51678094, and Grant No. 51509024).

References

Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Chang, D., Y. Lai, and J. Gao. 2019. “An investigation on the constitutive response of frozen saline coarse sandy soil based on particle breakage and plastic shear mechanisms.” Cold Reg. Sci. Technol. 159 (Mar): 94–105. https://doi.org/10.1016/j.coldregions.2018.12.011.
Cheng, Y. P., Y. Nakata, and M. D. Bolton. 2003. “Discrete element simulation of crushable soil.” Géotechnique 53 (7): 633–641. https://doi.org/10.1680/geot.2003.53.7.633.
Ciantia, M. O., M. Arroyo, C. O’Sullivan, A. Gens, and T. Liu. 2019. “Grading evolution and critical state in a discrete numerical model of Fontainebleau sand.” Géotechnique 69 (1): 1–15. https://doi.org/10.1680/jgeot.17.P.023.
Cil, M. B., R. C. Hurley, and L. Graham-Brady. 2019. “A rate-dependent constitutive model for brittle granular materials based on breakage mechanics.” J. Am. Ceram. Soc. 102 (9): 5524–5534. https://doi.org/10.1111/jace.16376.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Feng, D.-K., J.-M. Zhang, and W.-J. Hou. 2018. “Three-dimensional direct-shear behaviors of a gravel–structure interface.” J. Geotech. Geoenviron. Eng. 144 (12): 04018095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001968.
Frossard, E., C. Dano, W. Hu, and P. Y. Hicher. 2012. “Rockfill shear strength evaluation: A rational method based on size effects.” Géotechnique 62 (5): 415–427. https://doi.org/10.1680/geot.10.P.079.
Ghafghazi, M., and D. Shuttle. 2009. “Confidence and accuracy in determination of the critical state friction angle.” Soils Found. 49 (3): 391–395. https://doi.org/10.3208/sandf.49.391.
Ghafghazi, M., D. A. Shuttle, and J. T. DeJong. 2014. “Particle breakage and the critical state of sand.” Soils Found. 54 (3): 451–461. https://doi.org/10.1016/j.sandf.2014.04.016.
Hanley, K. J., C. O’Sullivan, and X. Huang. 2015. “Particle-scale mechanics of sand crushing in compression and shearing using DEM.” Soils Found. 55 (5): 1100–1112. https://doi.org/10.1016/j.sandf.2015.09.011.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Indraratna, B., D. Ionescu, and H. D. Christie. 1998. “Shear behavior of railway ballast based on large-scale triaxial tests.” J. Geotech. Geoenviron. Eng. 124 (5): 439–449. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(439).
Jia, Y., B. Xu, S. Chi, B. Xiang, D. Xiao, and Y. Zhou. 2019. “Particle breakage of rockfill material during triaxial tests under complex stress paths.” Int. J. Geomech. 19 (12): 04019124. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001517.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Géotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Nakata, Y., M. Hyodo, A. F. L. Hyde, Y. Kato, and H. Murata. 2001. “Microscopic particle crushing of sand subjected to high pressure one-dimensional compression.” Soils Found. 41 (1): 69–82. https://doi.org/10.3208/sandf.41.69.
Ovalle, C., C. Dano, P.-Y. Hicher, and M. Cisternas. 2015. “Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio.” Can. Geotech. J. 52 (5): 587–598. https://doi.org/10.1139/cgj-2014-0079.
Saberi, M., C.-D. Annan, and J.-M. Konrad. 2017. “Constitutive modeling of gravelly soil–structure interface considering particle breakage.” J. Eng. Mech. 143 (8): 04017044. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001246.
Sadrekarimi, A., and S. M. Olson. 2010. “Particle damage observed in ring shear tests on sands.” Can. Geotech. J. 47 (5): 497–515. https://doi.org/10.1139/T09-117.
Salgado, R., J. K. Mitchell, and M. Jamiolkowski. 1997. “Cavity expansion and penetration resistance in sand.” J. Geotech. Geoenviron. Eng. 123 (4): 344–354. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(344).
Salgado, R., J. K. Mitchell, and M. Jamiolkowski. 1998. “Calibration chamber size effects on penetration resistance in sand.” J. Geotech. Geoenviron. Eng. 124 (9): 878–888. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(878).
Szypcio, Z. 2016. “Stress-dilatancy for soils. Part I: The frictional state theory.” Studia Geotechnica Et Mechanica 38 (4): 51–57. https://doi.org/10.1515/sgem-2016-0030.
Tengattini, A., A. Das, and I. Einav. 2016. “A constitutive modelling framework predicting critical state in sand undergoing crushing and dilation.” Géotechnique 66 (9): 695–710. https://doi.org/10.1680/jgeot.14.P.164.
Vaid, Y. P., and S. Sasitharan. 1992. “The strength and dilatancy of sand.” Can. Geotech. J. 29 (3): 522–526. https://doi.org/10.1139/t92-058.
Wang, W., and M. R. Coop. 2018. “Breakage behaviour of sand particles in point-load compression.” Geotech. Lett. 8 (1): 61–65. https://doi.org/10.1680/jgele.17.00155.
Wei, H., T. Zhao, J. He, Q. Meng, and X. Wang. 2018. “Evolution of particle breakage for calcareous sands during ring shear tests.” Int. J. Geomech. 18 (2): 04017153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001073.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, Q. Chen, L. Long, and J. Xiang. 2017. “Evolution of particle breakage and volumetric deformation of binary granular soils under impact load.” Granul. Matter 19 (4): 71. https://doi.org/10.1007/s10035-017-0756-z.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: Influence of particle breakage.” J. Geotech. Geoenviron. Eng. 140 (12): 04014071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001177.
Xiao, Y., H. Liu, C. S. Desai, Y. Sun, and H. Liu. 2016a. “Effect of intermediate principal-stress ratio on particle breakage of rockfill material.” J. Geotech. Geoenviron. Eng. 142 (4): 06015017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001433.
Xiao, Y., H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Zhang. 2016b. “Influence of particle breakage on critical state line of rockfill material.” Int. J. Geomech. 16 (1): 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
Xiao, Y., M. Meng, A. Daouadjie, Q. Chen, Z. Wu, and X. Jiang. 2019a. “Effect of particle size on crushing and deformation behaviors of rockfill materials.” Geosci. Front. https://doi.org/10.1016/j.gsf.2018.10.010.
Xiao, Y., Z. Sun, C. S. Desai, and M. Meng. 2019b. “Strength and surviving probability in grain crushing under acidic erosion and compression.” Int. J. Geomech. 19 (11): 04019123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001508.
Xiao, Y., Z. Sun, A. M. Stuedlein, C. Wang, Z. Wu, and Z. Zhang. 2019c. “Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials.” Geosci. Front. https://doi.org/10.1016/j.gsf.2019.06.010.
Xiao, Y., L. Wang, X. Jiang, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019d. “Acoustic emission and force drop in grain crushing of carbonate sands.” J. Geotech. Geoenviron. Eng. 145 (9): 04019057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002141.
Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019e. “Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression.” Acta Geotech. 14 (6): 1741–1755. https://doi.org/10.1007/s11440-019-00790-1.
Yu, F. 2017. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Yu, H. S., and G. T. Houlsby. 1991. “Finite cavity expansion in dilatant soils: Loading analysis.” Géotechnique 41 (2): 173–183. https://doi.org/10.1680/geot.1991.41.2.173.
Zhang, X., and B. A. Baudet. 2013. “Particle breakage in gap-graded soil.” Geotech. Lett. 3 (2): 72–77. https://doi.org/10.1680/geolett.13.00022.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 5May 2020

History

Received: Oct 26, 2019
Accepted: Jan 10, 2020
Published online: Feb 20, 2020
Published in print: May 1, 2020
Discussion open until: Jul 20, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, Ph.D., M.ASCE [email protected]
Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China; Professor, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China; Professor, School of Civil Engineering, Chongqing Univ., Chongqing, 400045, China (corresponding author). Email: [email protected]; [email protected]
Leihang Long [email protected]
Master, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
T. Matthew Evans, Ph.D., A.M.ASCE [email protected]
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. Email: [email protected]
Master, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Hanlong Liu, Ph.D. [email protected]
Professor and Vice President, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]
Armin W. Stuedlein, Ph.D., M.ASCE [email protected]
P.E.
Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share