Technical Papers
Apr 6, 2020

Load Transfer Method for Energy Piles in a Group with Pile–Soil–Slab–Pile Interaction

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 146, Issue 6

Abstract

The behavior of an energy pile in a group is different from that of an isolated energy pile due to thermal and mechanical interactions. This study aims to extend the load transfer method to consider the mechanical and thermal interactions of energy piles in groups. The load displacement curve of an energy pile in a group is modified from that of the isolated pile through a displacement factor to account for group effects. This paper presents the results of a full-scale field test of four operating energy piles over 12 months, against which the proposed method is validated. Temperature changes of ΔT=5°C, 10°C, 15°C, and 20°C were applied in the analyses. A comparison between the experimental and numerical results reveals the capability of the approach to provide information about the vertical displacement, vertical stress, and mobilized shaft resistance profile for an energy pile in a group subjected to both mechanical and heating thermal loads.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the Swiss National Science Foundation (financial support N. 200021_175500, Division II). The authors gratefully acknowledge the constructive contributions of Prof. Alessandro F. Rotta Loria.

References

Akrouch, G. A., M. Sánchez, and J. L. Briaud. 2014. “Thermo-mechanical behavior of energy piles in high plasticity clays.” Acta Geotech. 9 (3): 399–412. https://doi.org/10.1007/s11440-014-0312-5.
Amar, S., B. Clarke, M. Gambin, and T. Orr. 1991. The application of pressuremeter test results to foundation design in Europe, Part 1: Predrilled pressuremeters and self-boring pressuremeters. Rotterdam, Netherlands: A.A. Balkema.
Amar, S., and J.-F. Jézéquel. 1998. “Propriétés mécaniques des sols déterminées en place.” Techniques de l’ingénieur Construction 1 (C220): C220.1–C220.24.
Armaleh, S., and C. S. Desai. 1987. “Load deformation response of axially loaded piles.” J. Geotech. Eng. 113 (12): 1483–1500. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:12(1483).
Baguelin, F., and R. Frank. 1979. “Theoretical studies of piles using the finite element method.” In Numerical methods in offshore piling, 83–91. London: Thomas Telford Publishing.
Batini, N., A. F. Rotta Loria, P. Conti, D. Testi, W. Grassi, and L. Laloui. 2015. “Energy and geotechnical behaviour of energy piles for different design solutions.” Comput. Geotech. 86 (1): 199–213. https://doi.org/10.1016/j.applthermaleng.2015.04.050.
Bourne-Webb, P. J., B. L. Amatya, K. Soga, T. Amis, C. Davidson, and P. Payne. 2009. “Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles.” Géotechnique 59 (3): 237–248. https://doi.org/10.1680/geot.2009.59.3.237.
Chin, J. T., and H. G. Poulos. 1991. “A ‘T-Z’ approach for cyclic axial loading analysis of single piles.” Comput. Geotech. 12 (4): 289–320. https://doi.org/10.1016/0266-352X(91)90027-D.
Chow, Y. 1986. “Analysis of vertically loaded pile groups.” Int. J. Numer. Anal. Meth. Geomech. 10 (1): 59–72. https://doi.org/10.1002/nag.1610100105.
Clarke, B. G. 1994. Pressuremeters in geotechnical design. Boca Raton, FL: CRC Press.
Comodromos, E. M., M. C. Papadopoulou, and L. Laloui. 2016. “Contribution to the design methodologies of piled raft foundations under combined loadings.” Can. Geotech. J. 53 (4): 559–577. https://doi.org/10.1139/cgj-2015-0251.
COMSOL. 2017. COMSOL Multiphysics version 5.3: User’s guide and reference manual. Burlington, MA: COMSOL.
Coyle, H. M., and L. C. Reese. 1966. “Load transfer for axially loaded piles in clay.” J. Soil Mech. Found. Div. 92 (2): 1–26.
Di Donna, A., and L. Laloui. 2015. “Numerical analysis of the geotechnical behaviour of energy piles.” Int. J. Numer. Analyt. Methods Geomech. 39 (8): 861–888. https://doi.org/10.1002/nag.2341.
Di Donna, A., A. F. Rotta Loria, and L. Laloui. 2016. “Numerical study on the response of a group of energy piles under different combinations of thermo-mechanical loads.” Comput. Geotech. 72 (1): 126–142. https://doi.org/10.1016/j.compgeo.2015.11.010.
Frank, R. 2009. “Design of foundations in France with the use of Menard pressuremeter tests (MPM)” Soil Mech. Found. Eng. 46 (6): 219–231. https://doi.org/10.1007/s11204-010-9069-5.
Frank, R., N. Kalteziotis, M. Bustamante, S. Christoulas, and H. Zervogiannis. 1991. “Evaluation of performance of two piles using pressuremeter method.” J. Geotech. Eng. 117 (5): 695–713. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:5(695).
Frank, R., and S. R. Zhao. 1982. “Estimation par les paramètres pressiométriques de l’enfoncement sous charge axiale de pieux forés dans des sols fins.” Bull. de Liaison des Laboratoire des Ponts et Chaussées 119: 17–24.
Gawecka, K. A., D. M. G. Taborda, D. M. Potts, W. Cui, L. Zdravković, and M. S. H. Kasri. 2017. “Numerical modelling of thermo-active piles in London clay.” Proc. Inst. Civ. Eng. Geotech. Eng. 170 (3): 201–219. https://doi.org/10.1680/jgeen.16.00096.
Goode, J. III, and J. S. McCartney. 2015. “Centrifuge modeling of boundary restraint effects in energy foundations.” J. Geotech. Geoenviron. Eng. 141 (8): 04015034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001333.
Goode, J. III, M. Zhang, and J. S. McCartney. 2014. “Centrifuge modeling of energy foundations in sand.” In Proc., ICPMG2014—Physical Modelling in Geotechnics, edited by C. Gaudin and D. White, 729–736. Boca Raton, FL: CRC Press.
Gorbunov-Posadov, M. I., and R. V. Serebrjanyi. 1961. “Design of structures on elastic foundation.” In Vol. 1 of Proc., 5th Int. Conf. on Soil Mechanics and Foundation Engineering, 643–648. Paris: Dunod.
Jeong, S., H. Min, and J. K. Lee. 2014. “Thermally induced mechanical response of energy piles in axially loaded pile groups.” Appl. Thermal Eng. 71 (1): 608–615. https://doi.org/10.1016/j.applthermaleng.2014.07.007.
Kalantidou, A., A. M. Tang, J. Pereira, and G. Hassen. 2012. “Preliminary study on the mechanical behaviour of heat exchanger pile in physical model.” Géotechnique 62 (11): 1047–1051. https://doi.org/10.1680/geot.11.T.013.
Knellwolf, C., H. Peron, and L. Laloui. 2011. “Geotechnical analysis of heat exchanger piles.” J. Geotech. Geoenviron. Eng. 137 (10): 890–902. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000513.
Kraft, M., Jr., R. P. Ray, and T. Kagawa. 1981. “Theoretical tz curves.” J. Geotech. Eng. 107 (GT11): 1543–1561.
Kramer, C. A., and P. Basu. 2014. “Performance of a model geothermal pile in sand.” In Proc., 8th Int. Conf. on Physical Modelling in Geotechnics, edited by C. Gaudin and D. White, 771–777. Boca Raton, FL: CRC Press.
Kulhawy, F. H., T. O’Rourke, J. P. Stewart, and J. Beech. 1983. Transmission line structure foundations for uplift-compression loading, load test summaries: Appendix to EPRI Final Report EL-2870. Palo Alto, CA: Electric Power Research Institute.
Laloui, L., M. Moreni, G. Steinmann, A. Fromentin, and D. Pahud. 1999. Test en conditions réelles du comportement statique d’un pieu soumis a des sollicitations thermomecaniques. Bern, Suisse: Office federal de I’energie.
Laloui, L., M. Moreni, and L. Vulliet. 2003. “Comportement d’un pieu bi-fonction, fondation et échangeur de chaleur.” Can. Geotech. J. 40 (2): 388–402. https://doi.org/10.1139/t02-117.
Laloui, L., M. Nuth, and L. Vulliet. 2006. “Experimental and numerical investigations of the behaviour of a heat exchanger pile.” Int. J. Numer. Analyt. Methods Geomech. 30 (8): 763–781. https://doi.org/10.1002/nag.499.
Lee, K. M., and Z. R. Xiao. 2001. “A simplified nonlinear approach for pile group settlement analysis in multilayered soils.” Can. Geotech. J. 38 (5): 1063–1080. https://doi.org/10.1139/t01-034.
McCartney, J. S., and K. D. Murphy. 2012. “Strain distributions in full-scale energy foundations (DFI Young professor paper competition 2012).” DFI J. 6 (2): 26–38.
McCartney, J. S., and J. E. Rosenberg. 2011. “Impact of heat exchange on side shear in thermo-active foundations.” In Proc., Geo-Frontiers: Advances in Geotechnical Engineering, edited by J. Han and D. E. Alzamora, 488–498. Reston, VA: ASCE.
Menard, L. 1975. “Interpretation and application of pressuremeter test results.” Soils-Soils 26: 5–44.
Mimouni, T., and L. Laloui. 2014. “Towards a secure basis for the design of geothermal piles.” Acta Geotech. 9 (3): 355–366. https://doi.org/10.1007/s11440-013-0245-4.
Mimouni, T., and L. Laloui. 2015. “Behaviour of a group of energy piles.” Can. Geotech. J. 52 (12): 1913–1929. https://doi.org/10.1139/cgj-2014-0403.
Murphy, K. D., J. S. McCartney, and K. S. Henry. 2014. “Thermo-mechanical characterization of a full-scale energy foundation.” In Proc., From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering, edited by M. Iskander, J. E. Garlange, and M. H. Hussein, 617–628. Atlanta, GA. Reston, VA: ASCE.
Ng, C. W. W., C. Shi, A. Gunawan, and L. Laloui. 2014. “Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay.” Géotechnique Lett. 4 (4): 310–316. https://doi.org/10.1680/geolett.14.00063.
Ng, C. W. W., C. Shi, A. Gunawan, L. Laloui, and H. Liu. 2015. “Centrifuge modelling of heating effects on energy pile performance in saturated sand.” Can. Geotech. J. 52 (8): 1045–1057. https://doi.org/10.1139/cgj-2014-0301.
O’Neill, M. W., and H. B. Ha. 1982. “Comparative modelling of vertical pile groups.” In Proc., 2nd Int. Conf. Numerical Methods in Offshore Piling, 399–418. Austin, TX: Univ. of Texas at Austin.
Ooi, L. H., C. F. Boey, and J. P. Carter. 1989. “Modified load transfer analysis of axially loaded piles.” Pile Talk Int. 89: 217–233.
Pasten, C., and J. C. Santamarina. 2014. “Thermally induced long-term displacement of thermoactive piles.” J. Geotech. Geoenviron. Eng. 140 (5): 06014003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001092.
Poulos, H. G. 1968. “Analysis of the settlement of pile groups.” Géotechnique 18 (4): 449–471. https://doi.org/10.1680/geot.1968.18.4.449.
Poulos, H. G. 1989. “Pile behaviour–theory and application.” Géotechnique 39 (3): 365–415. https://doi.org/10.1680/geot.1989.39.3.365.
Poulos, H. G., and E. H. Davis. 1974. Elastic solutions for soil and rock mechanics. Chichester, UK: Wiley.
Poulos, H. G., and E. H. Davis. 1980. Pile foundation analysis and design. Chichester, UK: Wiley.
Randolph, M. F. 1994. “Design methods for pile groups and piled rafts.” In Proc., Int. Conf. on Soil Mechanics and Foundation Engineering, 61–82. London: International Society for Soil Mechanics and Geotechnical Engineering.
Randolph, M. F. 1993. “Efficient design of piled rafts.” In Proc., Deep Foundations on Bored and Auger Piles, edited by W. Van Impe, 119–130. Ghent, Belgium: Ghent Univ.
Randolph, M. F., and S. Gourvenec. 2011. Offshore geotechnical engineering. Oxon, UK: Spon Press.
Randolph, M. F., and C. P. Wroth. 1979. “An analysis of the vertical deformation of pile groups.” Géotechnique 29 (4): 423–439. https://doi.org/10.1680/geot.1979.29.4.423.
Rotta Loria, A. F., A. Gunawan, C. Shi, L. Laloui, and C. W. W. Ng. 2015. “Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads.” Geomech. Energy Environ. 1 (1): 1–15. https://doi.org/10.1016/j.gete.2015.03.002.
Rotta Loria, A. F., and L. Laloui. 2016. “The interaction factor method for energy pile groups.” Comput. Geotech. 80 (Dec): 121–137. https://doi.org/10.1016/j.compgeo.2016.07.002.
Rotta Loria, A. F., and L. Laloui. 2017a. “The equivalent pier method for energy pile groups.” Géotechnique 67 (8): 691–702. https://doi.org/10.1680/jgeot.16.P.139.
Rotta Loria, A. F., and L. Laloui. 2017b. “Thermally induced group effects among energy piles.” Géotechnique 67 (5): 374–393. https://doi.org/10.1680/jgeot.16.P.039.
Rotta Loria, A. F., and L. Laloui. 2018a. “Group action caused by various operating energy piles.” Géotechnique 68 (9): 834–841. https://doi.org/10.1680/jgeot.17.P.213.
Rotta Loria, A. F., and L. Laloui. 2018b. “Thermo-mechanical schemes for energy piles.” In Proc., Int. Symp. on Energy Geotechnics. New York: Springer. https://doi.org/10.1007/978-3-319-99670-7.
Rotta Loria, A. F., A. Vadrot, and L. Laloui. 2018. “Analysis of the vertical displacement of energy pile groups.” Geomech. Energy Environ. 16 (Dec): 1–14. https://doi.org/10.1016/j.gete.2018.04.001.
Rowe, P. W. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. Royal Soc. London. Series A. Math. Phys. Sci. 269 (1339): 500–527.
Saggu, R., and T. Chakraborty. 2015. “Cyclic thermo-mechanical analysis of energy piles in sand.” Geotech. Geol. Eng. 33 (1): 1–22. https://doi.org/10.1007/s10706-014-9798-8.
Salciarini, D., F. Ronchi, E. Cattoni, and C. Tamagnini. 2015. “Thermomechanical effects induced by energy piles operation in a small piled raft.” Int. J. Geomech. 15 (2): 04014042. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000375.
Seed, H. B., and L. C. Reese. 1957. “The action of soft clay along friction piles.” T. Am. Soc. Civ. Eng. 122 (1): 731–754.
Selvadurai, A. P. 1979. Elastic analysis of soil-foundation interaction. Amsterdam, Netherlands: Elsevier.
Stewart, M. A., and J. S. McCartney. 2014. “Centrifuge modeling of soil-structure interaction in energy foundations.” J. Geotech. Geoenviron. Eng. 140 (4): 04013044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001061.
Suryatriyastuti, M., S. Burlon, and H. Mroueh. 2016. “On the understanding of cyclic interaction mechanisms in an energy pile group.” Int. J. Numer. Analyt. Methods Geomech. 40 (1): 3–24. https://doi.org/10.1002/nag.2382.
Suryatriyastuti, M., H. Mroueh, and S. Burlon. 2012. “Understanding the temperature-induced mechanical behaviour of energy pile foundations.” Renewable Sustainable Energy Rev. 16 (5): 3344–3354. https://doi.org/10.1016/j.rser.2012.02.062.
Suryatriyastuti, M., H. Mroueh, and S. Burlon. 2014. “A load transfer approach for studying the cyclic behavior of thermo-active piles.” Comput. Geotech. 55 (Jan): 378–391. https://doi.org/10.1016/j.compgeo.2013.09.021.
Sutman, M., T. Brettmann, and C. G. Olgun. 2019a. “Full-scale in-situ tests on energy piles: Head and base-restraining effects on the structural behaviour of three energy piles.” Geomech. Energy Environ. 18 (Jun): 56–68. https://doi.org/10.1016/j.gete.2018.08.002.
Sutman, M., G. Olgun, and L. Laloui. 2019b. “Cyclic load–transfer approach for the analysis of energy piles.” J. Geotech. Geoenviron. Eng. 145 (1): 04018101. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001992.
Sutman, M., G. Olgun, L. Laloui, and T. Brettmann. 2017. “Effect of end-restraint conditions on energy pile behavior.” In Proc., Geotechnical Frontiers 2017, 165–174. Reston, VA: ASCE. https://doi.org/10.1061/9780784480472.017.
Sutman, M., G. Speranza, A. Ferrari, P. Larrey-Lassalle, and L. Laloui. 2020. “Long-term performance and life cycle assessment of energy piles in three different climatic conditions.” Renewable Energy 146 (Feb): 1177–1191. https://doi.org/10.1016/j.renene.2019.07.035.
Wang, B., A. Bouazza, and C. Haberfield. 2011. “Preliminary observations from laboratory scale model geothermal pile subjected to thermal-mechanical loading.” In Proc., Geo-Frontiers 2011: Advances in Geotechnical Engineering, edited by J. Han and D. E. Alzamora, 430–439. Reston, VA: ASCE.
Wang, B., A. Bouazza, R. M. Singh, C. Haberfield, D. Barry-Macaulay, and S. Baycan. 2015. “Posttemperature effects on shaft capacity of a full-scale geothermal energy pile.” J. Geotech. Geoenviron. Eng. 141 (4): 04014125. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001266.
Yavari, N., A. M. Tang, J. M. Pereira, and G. Hassen. 2014. “Experimental study on the mechanical behaviour of a heat exchanger pile using physical modeling.” Acta Geotech. 9 (3): 385–398. https://doi.org/10.1007/s11440-014-0310-7.
You, S., X. Cheng, H. Guo, and Z. Yao. 2016. “Experimental study on structural response of CFG energy piles.” Appl. Thermal Eng. 96 (1): 640–651. https://doi.org/10.1016/j.applthermaleng.2015.11.127.
Zhang, L., and H. H. Einstein. 1998. “End bearing capacity of drilled shafts in rock.” J. Geotech. Geoenviron. Eng. 124 (7): 574–584. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(574).

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 6June 2020

History

Received: Apr 5, 2019
Accepted: Jan 8, 2020
Published online: Apr 6, 2020
Published in print: Jun 1, 2020
Discussion open until: Sep 6, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Laboratory of Soil Mechanics, Swiss Federal Institute of Technology in Lausanne, Station 18, CH 1015 Lausanne, Switzerland (corresponding author). ORCID: https://orcid.org/0000-0002-9245-1786. Email: [email protected]
Postdoctoral Researcher, Laboratory of Soil Mechanics, Swiss Federal Institute of Technology in Lausanne, Station 18, CH 1015 Lausanne, Switzerland. ORCID: https://orcid.org/0000-0002-3492-1700. Email: [email protected]
Lyesse Laloui, Ph.D., M.ASCE [email protected]
Professor, Laboratory of Soil Mechanics, Swiss Federal Institute of Technology in Lausanne, Station 18, CH 1015 Lausanne, Switzerland. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share