Technical Papers
Feb 14, 2020

Detecting Microbially Induced Calcium Carbonate Precipitation in Porous Systems Using Low-Field Nuclear Magnetic Resonance Relaxometry

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 146, Issue 4

Abstract

Low-field nuclear magnetic resonance has been shown to be sensitive to the chemical and physical changes in a porous medium caused by microbially induced calcium carbonate precipitation (MICP), confirming its potential for detection of MICP for subsurface engineering applications. This investigation used a 2-MHz rock core analyzer, measuring T2 relaxation, in combination with scanning electron microscopy to characterize the daily chemical and physical changes occurring in various granular media including 1- and 0.5-mm soda lime glass beads and 1- and 0.45-mm quartz sand. An increase in T2 time was observed in all of the granular media in accordance with MICP progression. An estimate of the surface relaxivity, ρ, was obtained for the silica glass, quartz sand, and mineral precipitate, which allowed for correlation between mineral precipitation surface coverage and T2 relaxation time. The results indicated the potential for detailed in situ MICP progress monitoring during the early stages of the process by portable low-field nuclear magnetic resonance (NMR) devices.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This material is based upon work supported by the Department of Energy under Grant Nos. DE-FE0024296 and DE-FE0026513. Any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the Department of Energy (DOE).

References

Bang, S., S. H. Min, and S. S. Bang. 2011. “Microbiologically-induced soil stabilization: Application of sporosarcina pasteurii for fugitive dust control.” In Proc., Geo-Frontiers 2011. Reston, VA: ASCE.
Bray, J. M., E. G. Lauchnor, G. D. Redden, R. Gerlach, Y. Fujita, S. L. Codd, and J. D. Seymour. 2017. “Impact of mineral precipitation on flow and mixing in porous media determined by microcomputed tomography and MRI.” Environ. Sci. Technol. 51 (3): 1562–1569. https://doi.org/10.1021/acs.est.6b02999.
Brownstein, K. R., and C. E. Tarr. 1979. “Importance of classical diffusion in NMR-studies of water in biological cells.” Phys. Rev. A 19 (6): 2446–2453. https://doi.org/10.1103/PhysRevA.19.2446.
Carr, H. Y., and E. M. Purcell. 1954. “Effects of diffusion on free precession in nuclear magnetic resonance experiments.” Phys. Rev. 94 (3): 630–638. https://doi.org/10.1103/PhysRev.94.630.
DeJong, J. T., M. B. Fritzges, and K. Nusslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
De Muynck, W., N. De Belie, and W. Verstraete. 2010. “Microbial carbonate precipitation in construction materials: A review.” Ecol. Eng. 36 (2): 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006.
Ebigbo, A., A. Phillips, R. Gerlach, R. Helmig, A. B. Cunningham, H. Class, and L. H. Spangler. 2012. “Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns.” Water Resour. Res. 48 (7): W07519. https://doi.org/10.1029/2011WR011714.
Edelstein, W. A., J. M. S. Hutchison, G. Johnson, and T. Redpath. 1980. “Spin warp NMR imaging and applications to human whole-body imaging.” Phys. Med. Biol. 25 (4): 751–756. https://doi.org/10.1088/0031-9155/25/4/017.
Elwinger, F., P. Pourmand, and I. Furó. 2017. “Diffusive transport in pores. Tortuosity and molecular interaction with the pore wall.” J. Phys. Chem. C 121 (25): 13757–13764. https://doi.org/10.1021/acs.jpcc.7b03885.
Ferris, F. G., L. G. Stehmeier, A. Kantzas, and F. M. Mourits. 1996. “Bacteriogenic mineral plugging.” J. Can. Pet. Technol. 35 (8): 56–61. https://doi.org/10.2118/97-09-07.
Foley, I., S. A. Farooqui, and R. L. Kleinberg. 1996. “Effect of paramagnetic ions on NMR relaxation of fluids at solid surfaces.” J. Magn. Reson., Ser. A 123 (1): 95–104. https://doi.org/10.1006/jmra.1996.0218.
Fridjonsson, E. O., J. D. Seymour, L. N. Schultz, R. Gerlach, A. B. Cunningham, and S. L. Codd. 2011. “NMR measurement of hydrodynamic dispersion in porous media subject to biofilm mediated precipitation reactions.” J. Contam. Hydrol. 120–21 (Mar): 79–88. https://doi.org/10.1016/j.jconhyd.2010.07.009.
Fujita, Y., J. L. Taylor, L. M. Wendt, D. W. Reed, and R. W. Smith. 2010. “Evaluating the potential of native ureolytic microbes to remediate a 90SR contaminated environment.” Environ. Sci. Technol. 44 (19): 7652–7658. https://doi.org/10.1021/es101752p.
Grunewald, E., and R. Knight. 2011. “A laboratory study of NMR relaxation times in unconsolidated heterogeneous sediments.” Geophysics 76 (4): G73–G83. https://doi.org/10.1190/1.3581094.
Handley-Sidhu, S., E. Sham, M. O. Cuthbert, S. Nougarol, M. Mantle, M. L. Johns, L. E. Macaskie, and J. C. Renshaw. 2013. “Kinetics of urease mediated calcite precipitation and permeability reduction of porous media evidenced by magnetic resonance imaging.” Int. J. Environ. Sci. Technol. 10 (5): 881–890. https://doi.org/10.1007/s13762-013-0241-0.
Jung, D., H. Biggs, J. Erikson, and P. U. Ledyard. 1975. “New colorimetric reaction for end-point, continuous-flow, and kinetic measurement of urea.” Clin. Chem. 21 (8): 1136–1140. https://doi.org/10.1139/o09-011.
Kirkland, C. M., R. Hiebert, A. Phillips, E. Grunewald, D. O. Walsh, J. D. Seymour, and S. L. Codd. 2015. “Biofilm detection in a model well-bore environment using low-field NMR.” Ground Water Monit. Rem. 35 (4): 36–44. https://doi.org/10.1111/gwmr.12117.
Kirkland, C. M., S. Zanetti, E. Grunewald, D. O. Walsh, S. L. Codd, and A. J. Phillips. 2017. “Detecting microbially induced calcite precipitation in a model well-bore using downhole low-field NMR.” Environ. Sci. Technol. 51 (3): 1537–1543. https://doi.org/10.1021/acs.est.6b04833.
Kleinberg, R. L., and M. A. Horsfield. 1990. “Transverse relaxation processes in porous sedimentary-rock.” J. Magn. Reson. 88 (1): 9–19. https://doi.org/10.1016/0022-2364(90)90104-H.
Kleinberg, R. L., W. E. Kenyon, and P. P. Mitra. 1994. “Mechanism of NMR relaxation of fluids in rock.” J. Magn. Reson., Ser. A 108 (2): 206–214. https://doi.org/10.1006/jmra.1994.1112.
Latour, L. L., P. P. Mitra, R. L. Kleinberg, and C. H. Sotak. 1993. “Time-dependent diffusion-coefficient of fluids in porous-media as a probe of surface-to-volume ratio.” J. Magn. Reson., Ser. A 101 (3): 342–346. https://doi.org/10.1006/jmra.1993.1056.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian Jr. 2016. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Luo, Z. X., J. Paulsen, and Y. Q. Song. 2015. “Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements.” J. Magn. Reson. 259 (Oct): 146–152. https://doi.org/10.1016/j.jmr.2015.08.002.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Meiboom, S., and D. Gill. 1958. “Modified spin-echo method for measuring nuclear relaxation times.” Rev. Sci. Instrum. 29 (8): 688–691. https://doi.org/10.1063/1.1716296.
Mitchell, A. C., and F. G. Ferris. 2006. “Effect of strontium contaminants upon the size and solubility of calcite crystals precipitated by the bacterial hydrolysis of urea.” Environ. Sci. Technol. 40 (3): 1008–1014. https://doi.org/10.1021/es050929p.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Pham, V. P., L. A. van Paassen, W. R. van der Star, and T. J. Heimovaara. 2018. “Evaluating strategies to improve process efficiency of denitrification-based MICP.” J. Geotech. Geoenviron. Eng. 144 (8): 04018049. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001909.
Phillips, A. J., et al. 2016. “Fracture sealing with microbially-induced calcium carbonate precipitation: A field study.” Environ. Sci. Technol. 50 (7): 4111–4117. https://doi.org/10.1021/acs.est.5b05559.
Phillips, A. J., E. Lauchnor, J. Eldring, R. Esposito, A. C. Mitchell, R. Gerlach, A. B. Cunningham, and L. H. Spangler. 2013. “Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation.” Environ. Sci. Technol. 47 (1): 142–149. https://doi.org/10.1021/es301294q.
Phillips, A. J., E. Troyer, R. Hiebert, C. Kirkland, R. Gerlach, A. B. Cunningham, L. Spangler, J. Kirksey, W. Rowe, and R. Esposito. 2018. “Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): A field scale demonstration.” J. Pet. Sci. Eng. 171 (Dec): 1141–1148. https://doi.org/10.1016/j.petrol.2018.08.012.
Sham, E., M. D. Mantle, J. Mitchell, D. J. Tobler, V. R. Phoenix, and M. L. Johns. 2013. “Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements.” J. Contam. Hydrol. 152 (Sep): 35–43. https://doi.org/10.1016/j.jconhyd.2013.06.003.
Shashank, B. S., J. M. Minto, D. N. Singh, G. E. Mountassir, and C. W. Knapp. 2018. “Guidance for investigating calcite precipitation by urea hydrolysis for geomaterials.” J. Test. Eval. 46 (4): 1527–1538. https://doi.org/10.1520/JTE20170122.
Siddique, R., and N. K. Chahal. 2011. “Effect of ureolytic bacteria on concrete properties.” Constr. Build. Mater. 25 (10): 3791–3801. https://doi.org/10.1016/j.conbuildmat.2011.04.010.
Song, Y.-Q. 2013. “Magnetic resonance of porous media (MRPM): A perspective.” J. Magn. Reson. 229 (Apr): 12–24. https://doi.org/10.1016/j.jmr.2012.11.010.
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. “Microbiological precipitation of CaCO3.” Soil Biol. Biochem. 31 (11): 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6.
Stoodley, P., K. Sauer, D. G. Davies, and J. W. Costerton. 2002. “Biofilms as complex differentiated communities.” Ann. Rev. Microbiol. 56 (1): 187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705.
Updegraff, D. M. 2018 . “Plugging and penetration of reservoir rock by microorganisms.” In Proc., Int. Conf. on the Microbial Enhancement of Oil Recovery, edited by E. C. Donaldson and J. B. Clark, 80–85. Bartlesville, OK: USDOE.
van Paassen, L. A., R. Ghose, T. J. van der Linden, W. R. van der Star, and M. C. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Warren, L. A., P. A. Maurice, N. Parmar, and F. G. Ferris. 2001. “Microbially mediated calcium carbonate precipitation: Implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants.” Geomicrobiol. J. 18 (1): 93–115. https://doi.org/10.1080/01490450151079833.
Watson, A. T., and C. T. Philip Chang. 1997. “Characterizing porous media with NMR methods.” Prog. Nucl. Magn. Reson. Spectrosc. 31 (4): 343–386. https://doi.org/10.1016/S0079-6565(97)00053-8.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 4April 2020

History

Received: May 30, 2019
Accepted: Oct 29, 2019
Published online: Feb 14, 2020
Published in print: Apr 1, 2020
Discussion open until: Jul 14, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Linn W. Thrane
Ph.D. Student, Dept. of Mechanical and Industrial Engineering, Center for Biofilm Engineering, Montana State Univ., Bozeman, MT 59717.
M.S. Student, Dept. of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State Univ., Bozeman, MT 59717. ORCID: https://orcid.org/0000-0002-1895-5935
Laboratory Manager, Center for Biofilm Engineering, Montana State Univ., Bozeman, MT 59717. ORCID: https://orcid.org/0000-0003-1821-5758
Catherine M. Kirkland
Professor, Dept. of Civil Engineering, Center for Biofilm Engineering, Montana State Univ., Bozeman, MT 59717.
Evan R. McCarney
Principal Scientist, Korimako Chemical Limited, P.O. Box 27575, Marion Square, Te Aro, Wellington 6021, New Zealand; School of Chemistry and Physical Sciences, Victoria Univ. of Wellington, Wellington 6012, New Zealand.
Robin Dykstra
Professor, School of Engineering and Computer Science, Victoria Univ. of Wellington, Wellington 6012, New Zealand.
Professor, Dept. of Mechanical and Industrial Engineering, Center for Biofilm Engineering, Montana State Univ., Bozeman, MT 59717 (corresponding author). ORCID: https://orcid.org/0000-0003-3859-8565. Email: [email protected]
Adrienne J. Phillips
Professor, Dept. of Civil Engineering, Center for Biofilm Engineering, Montana State Univ., Bozeman, MT 59717.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share