Abstract

Microbially induced calcite precipitation (MICP) has attracted significant attention as a promising in situ ground reinforcement method, particularly for the improvement of existing structure foundations. Prior to its widespread application, further study is required to answer questions that seek to improve understanding of the fundamental mechanisms of cementation. This paper focuses on the influence of particle shape on the stiffness and strength of MICP-treated glass beads through a series of unconfined compression tests. The concept of combined overall regularity was used to quantitatively evaluate the particle shape of five mixtures with different proportions of rounded and angular glass beads. Increases in the combined overall regularity resulted in significant decreases in the unconfined compressive strength and secant modulus at 50% unconfined strength, particularly for specimens with greater cementation, but a slight increase in the calcite precipitation. This validates that it is the calcite-bridging formation between particle contacts that primarily contributes to the strength increase observed in MICP-treated glass beads.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the financial support from the 111 Project (Grant No. B13024), the National Science Foundation of China (Grant Nos. 41831282, 51678094, and 51578096), and the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681). Dr. T. Matthew Evans was supported by the US National Science Foundation (Grant No. CMMI-1538460) during the course of this work. This support is gratefully acknowledged.

References

Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
Alshibli, K. A., and M. B. Cil. 2018. “Influence of particle morphology on the friction and dilatancy of sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001841.
Alshibli, K. A., M. F. Jarrar, A. M. Druckrey, and R. I. Al-Raoush. 2017. “Influence of particle morphology on 3D kinematic behavior and strain localization of sheared sand.” J. Geotech. Geoenviron. Eng. 143 (2): 04016097. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001601.
Alshibli, K. A., and S. Sture. 2000. “Shear band formation in plane strain experiments of sand.” J. Geotech. Geoenviron. Eng. 126 (6): 495–503. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:6(495).
Altuhafi, F., C. O’Sullivan, and I. Cavarretta. 2013. “Analysis of an image-based method to quantify the size and shape of sand particles.” J. Geotech. Geoenviron. Eng. 139 (8): 1290–1307. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000855.
Altuhafi, F. N., and M. R. Coop. 2011. “Changes to particle characteristics associated with the compression of sands.” Géotechnique 61 (6): 459–471. https://doi.org/10.1680/geot.9.P.114.
Altuhafi, F. N., M. R. Coop, and V. N. Georgiannou. 2016. “Effect of particle shape on the mechanical behavior of natural sands.” J. Geotech. Geoenviron. Eng. 142 (12): 04016071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.
Amini, F., and G. Z. Qi. 2000. “Liquefaction testing of stratified silty sands.” J. Geotech. Geoenviron. Eng. 126 (3): 208–217. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(208).
Burbank, M., T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford. 2013. “Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria.” J. Geotech. Geoenviron. Eng. 139 (6): 928–936. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheng, L., and M. A. Shahin. 2016. “Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation.” Can. Geotech. J. 53 (9): 1376–1385. https://doi.org/10.1139/cgj-2015-0635.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Chiu, C. F., and X. J. Fu. 2008. “Interpreting undrained instability of mixed soils by equivalent intergranular state parameter.” Géotechnique 58 (9): 751–755. https://doi.org/10.1680/geot.2008.58.9.751.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Choi, S.-G., S. Wu, and J. Chu. 2016. “Biocementation for sand using an eggshell as calcium source.” J. Geotech. Geoenviron. Eng. 142 (10): 06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534.
Chou, C.-W., E. A. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of an aquaculture pond in sand.” Géotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
DeJong, J. T., M. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
DeJong, J. T., K. Soga, E. Kavazanjian, L. A. Van Paassen, A. Al Qabany, S. Burns, and M. Burbank. 2013. “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges.” Géotechnique 63 (4): 287–301. https://doi.org/10.1680/geot.SIP13.P.017.
Duncan, J. M., and C. Y. Chang. 1970. “Nonlinear analysis of stress and strain in soil.” J. Soil Mech. Found. Div. 96 (5): 1629–1653.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Feng, K., and B. M. Montoya. 2017. “Quantifying level of microbial-induced cementation for cyclically loaded sand.” J. Geotech. Geoenviron. Eng. 143 (6): 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
Gomez, M. G., C. M. Anderson, C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and T. R. Ginn. 2017. “Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands.” J. Geotech. Geoenviron. Eng. 143 (5): 04016124. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and M. Tsesarsky. 2018. “Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths.” J. Geotech. Geoenviron. Eng. 144 (1): 04017098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804.
Guo, P., and X. Su. 2007. “Shear strength, interparticle locking, and dilatancy of granular materials.” Can. Geotech. J. 44 (5): 579–591. https://doi.org/10.1139/t07-010.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Bio/Technol. 7 (2): 139–153.
Jamkar, S. S., and C. B. K. Rao. 2004. “Index of aggregate particle shape and texture of coarse aggregate as a parameter for concrete mix proportioning.” Cement Concrete Res. 34 (11): 2021–2027. https://doi.org/10.1016/j.cemconres.2004.03.010.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Keramatikerman, M., and A. Chegenizadeh. 2017. “Effect of particle shape on monotonic liquefaction: Natural and crushed sand.” Exp. Mech. 57 (8): 1341–1348. https://doi.org/10.1007/s11340-017-0313-z.
Khaddour, G., I. Riedel, E. Andò, P. Charrier, P. Bésuelle, J. Desrues, G. Viggiani, and S. Salager. 2018. “Grain-scale characterization of water retention behaviour of sand using X-ray CT.” Acta Geotech. 13 (3): 497–512. https://doi.org/10.1007/s11440-018-0628-7.
Khoubani, A., A. Nafisi, T. M. Evans, and B. M. Montoya. 2018. “The effect of grain size and shape on mechanical behavior of MICP sand II: Numerical study.” In Proc., Bio-Mediated & Bio-Inspired Geotechnics. Los Angeles: Earthquake Engineering Research Institute.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lee, M. L., W. S. Ng, and Y. Tanaka. 2013. “Stress-deformation and compressibility responses of bio-mediated residual soils.” Ecol. Eng. 60 (Nov): 142–149. https://doi.org/10.1016/j.ecoleng.2013.07.034.
Lin, H., M. Suleiman, D. G. Brown, and E. Kavazanjian Jr. 2016. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Maeda, K., H. Sakai, A. Kondo, T. Yamaguchi, M. Fukuma, and E. Nukudani. 2010. “Stress-chain based micromechanics of sand with grain shape effect.” Granul. Matter 12 (5): 499–505. https://doi.org/10.1007/s10035-010-0208-5.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018. “Effect of particle size distribution on the bio-cementation of coarse aggregates.” Acta Geotech. 13 (4): 1019–1025. https://doi.org/10.1007/s11440-017-0604-7.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Mitchell, J. K., and J. C. Santamarina. 2005. “Biological considerations in geotechnical engineering.” J. Geotech. Geoenviron. Eng. 131 (10): 1222–1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Mortensen, B. M., M. J. Haber, J. T. DeJong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Nafisi, A., A. Khoubani, B. M. Montoya, and T. M. Evans. 2018. “The effect of grain size and shape on mechanical behavior of MICP sand I: Experimental study.” In Proc., Bio-Mediated & Bio-Inspired Geotechnics. Los Angeles: Earthquake Engineering Research Institute.
Nemati, M., and G. Voordouw. 2003. “Modification of porous media permeability, using calcium carbonate produced enzymatically in situ.” Enzyme Microb. Technol. 33 (5): 635–642. https://doi.org/10.1016/S0141-0229(03)00191-1.
O’Donnell, T. S., and E. Kavazanjian Jr. 2015. “Stiffness and dilatancy improvements in uncemented sands treated through MICP.” J. Geotech. Geoenviron. Eng. 141 (11): 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407.
Oliveira, P. J. V., L. D. Freitas, and J. P. S. F. Carmona. 2017. “Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement.” J. Mater. Civ. Eng. 29 (4): 04016263. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001804.
Ozturan, T., and C. Cecen. 1997. “Effect of coarse aggregate type on mechanical properties of concretes with different strengths.” Cem. Concr. Res. 27 (2): 165–170. https://doi.org/10.1016/S0008-8846(97)00006-9.
Papadopoulou, A. I., and T. M. Tika. 2016. “The effect of fines plasticity on monotonic undrained shear strength and liquefaction resistance of sands.” Soil Dyn. Earthq. Eng. 88 (Sep): 191–206. https://doi.org/10.1016/j.soildyn.2016.04.015.
Park, S.-S., S.-G. Choi, and I.-H. Nam. 2014. “Effect of plant-induced calcite precipitation on the strength of sand.” J. Mater. Civ. Eng. 26 (8): 06014017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001029.
Polito, C. P., and J. R. Martin. 2001. “Effects of nonplastic fines on the liquefaction resistance of sands.” J. Geotech. Geoenviron. Eng. 127 (5): 408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408).
Rousé, P. C., R. J. Fannin, and D. A. Shuttle. 2008. “Influence of roundness on the void ratio and strength of uniform sand.” Géotechnique 58 (3): 227–231. https://doi.org/10.1680/geot.2008.58.3.227.
Sasaki, T., and R. Kuwano. 2016. “Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3.” Soils Found. 56 (3): 485–495. https://doi.org/10.1016/j.sandf.2016.04.014.
Shin, H., and J. C. Santamarina. 2013. “Role of particle angularity on the mechanical behavior of granular mixtures.” J. Geotech. Geoenviron. Eng. 139 (2): 353–355. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000768.
Tagliaferri, F., J. Waller, E. Andò, S. A. Hall, G. Viggiani, P. Bésuelle, and J. T. DeJong. 2011. “Observing strain localisation processes in bio-cemented sand using X-ray imaging.” Granul. Matter 13 (3): 247–250. https://doi.org/10.1007/s10035-011-0257-4.
Tatsuoka, F., H. Di Benedetto, T. Enomoto, S. Kawabe, and W. Kongkitkul. 2008. “Various viscosity types of geomaterials in shear and their mathematical expression.” Soils Found. 48 (1): 41–60. https://doi.org/10.3208/sandf.48.41.
Terzis, D., R. Bernier-Latmani, and L. Laloui. 2016. “Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions.” Geotech. Lett. 6 (1): 50–57. https://doi.org/10.1680/jgele.15.00134.
Tsomokos, A., and V. N. Georgiannou. 2010. “Effect of grain shape and angularity on the undrained response of fine sands.” Can. Geotech. J. 47 (5): 539–551. https://doi.org/10.1139/T09-121.
van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. C. M. van Loosdrecht. 2010a. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36 (2): 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010b. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
van Paassen, L. A., M. C. M. van Loosdrecht, M. Pieron, A. Mulder, D. J. M. Ngan-Tillard, and T. J. M. van der Linden. 2009. “Strength and deformation of biologically cemented sandstone.” In Proc., ISRM Regional Symp. Lisbon, Portugal: International Society for Rock Mechanics.
Venda Oliveira, P. J., M. S. da Costa, J. N. P. Costa, and M. Fernanda Nobre. 2015. “Comparison of the ability of two bacteria to improve the behavior of sandy soil.” J. Mater. Civ. Eng. 27 (1): 06014025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001138.
Venuleo, S., L. Laloui, D. Terzis, T. Hueckel, and M. Hassan. 2016. “Microbially induced calcite precipitation effect on soil thermal conductivity.” Geotech. Lett. 6 (1): 39–44. https://doi.org/10.1680/jgele.15.00125.
Wei, L. M., and J. Yang. 2014. “On the role of grain shape in static liquefaction of sand-fines mixtures.” Géotechnique 64 (9): 740–745. https://doi.org/10.1680/geot.14.T.013.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107 (Apr): 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019a. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: Influences of density and pressure.” J. Geotech. Geoenviron. Eng. 140 (12): 04014070. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001176.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019b. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., Z. Yuan, J. Lin, J. Ran, B. Dai, J. Chu, and H. Liu. 2019c. “Effect of particle shape of glass beads on the strength and deformation of cemented sands.” Acta. Geotech. https://doi.org/10.1007/s11440-11019-00830-w.
Yang, J., and X. D. Luo. 2015. “Exploring the relationship between critical state and particle shape for granular materials.” J. Mech. Phys. Solids 84 (Nov): 196–213. https://doi.org/10.1016/j.jmps.2015.08.001.
Yang, J., and L. M. Wei. 2012. “Collapse of loose sand with the addition of fines: The role of particle shape.” Géotechnique 62 (12): 1111–1125. https://doi.org/10.1680/geot.11.P.062.
Yang, S., S. Lacasse, and R. Sandven. 2006. “Determination of the transitional fines content of mixtures of sand and non-plastic fines.” Geotech. Test. J. 29 (2): 102–107.
Zhao, Q., L. Li, C. Li, M. Li, F. Amini, and H. Zhang. 2014. “Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease.” J. Mater. Civ. Eng. 26 (12): 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.
Zheng, J., and R. D. Hryciw. 2015. “Traditional soil particle sphericity, roundness and surface roughness by computational geometry.” Géotechnique 65 (6): 494–506. https://doi.org/10.1680/geot.14.P.192.
Zheng, J., and R. D. Hryciw. 2016. “Index void ratios of sands from their intrinsic properties.” J. Geotech. Geoenviron. Eng. 142 (12): 06016019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001575.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 145Issue 11November 2019

History

Received: Mar 14, 2018
Accepted: Jun 28, 2019
Published online: Aug 24, 2019
Published in print: Nov 1, 2019
Discussion open until: Jan 24, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China; Researcher, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China; Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]
Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-6265-9906. Email: [email protected]
Master, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-8457-7602. Email: [email protected]
Liang Cheng [email protected]
Research Fellow, School of Civil and Environmental Engineering, Nanyang Technological Univ., 10 Blk N1, 50 Nanyang Ave., Singapore 639798. Email: [email protected]
Hanlong Liu [email protected]
Professor and Vice President, Chongqing Univ., Chongqing 400450, China. Email: [email protected]
Associate Professor, Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State Univ., Tempe, AZ 85287-3005. ORCID: https://orcid.org/0000-0002-5050-0260. Email: [email protected]
Jian Chu, M.ASCE [email protected]
Professor, School of Civil and Environmental Engineering, Nanyang Technological Univ., 10 Blk N1, 50 Nanyang Ave., Singapore 639798. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share