Technical Papers
Feb 15, 2019

Effects of Compression and Decomposition on Saturated Hydraulic Conductivity of Municipal Solid Waste in Bioreactor Landfills

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 145, Issue 4

Abstract

Laboratory and field-scale tests were conducted to determine the saturated hydraulic conductivity (Ks) of fresh and degraded municipal solid waste (MSW) at multiple dry unit weights and void ratios (e). Field-scale Ks was obtained from numerical inversion of data from the Deer Track Bioreactor Experiment (DTBE). Reasonable prediction of field-Ks can be achieved from large-scale laboratory tests if laboratory specimens are prepared from MSW with composition and dry unit weight similar to field conditions. In both the laboratory and field, Ks of MSW decreased with increasing dry unit weight as the voids become smaller. At constant dry unit weight, more decomposed MSW had higher void ratio and Ks. The relationship between Ks and void ratio of MSW was consistent for a range of decomposition states, suggesting that void ratio is a better indicator of Ks than dry unit weight. An empirical relationship between Ks and void ratio was developed that predicted the measured Ks of MSW in this study within one order of magnitude. At field scale, however, the effects of decomposition on Ks of MSW are more complex because decomposition and settlement occur simultaneously and have opposite effects on void ratio, complicating prediction of Ks.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Financial support for this study was provided by the University of Wisconsin-North Carolina State University bioreactor partnership, which was sponsored by the US National Science Foundation (Grant No. EEC-0538500) and a consortium of industrial partners (CH2MHill, Geosyntec Consultants, Republic Services, Veolia Environmental Services, Waste Connections, and Waste Management) through the National Science Foundation’s Partnerships for Innovation program. Appreciation is extended to Christopher Bareither and Lauren Meyer for their laboratory and technical support.

References

Anderson, M. P., and W. W. Woessner. 2002. Applied groundwater modeling—Simulation of flow and advective transport, 381. San Diego: Academic Press.
ASTM. 2010. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2012a. Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM D1557-12e1. West Conshohocken, PA: ASTM.
ASTM. 2012b. Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM D698-12e2. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter. ASTM D5856. West Conshohocken, PA: ASTM.
Attal, A., J. Akunna, P. Camacho, P. Salmon, and I. Paris. 1992. “Anaerobic degradation of municipal wastes in landfill.” Water Sci. Technol. 25 (7): 243–253. https://doi.org/10.2166/wst.1992.0156.
Bareither, C. A. 2013. “Compression of municipal solid waste in bioreactor landfills: Mechanical creep and biocompression.” J. Geotech. Geoenviron. Eng. 139 (7): 1007–1021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000835.
Bareither, C. A., R. J. Breitmeyer, C. H. Benson, T. B. Edil, and M. A. Barlaz. 2012. “Deer track bioreactor experiment: Field-scale evaluation of municipal solid waste bioreactor performance.” J. Geotech. Geoenviron. Eng. 138 (6): 658–670. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000636.
Bareither, C. A., R. J. Breitmeyer, A. S. Erses, C. H. Benson, T. B. Edil, and M. A. Barlaz. 2008. “Relative contributions of moisture and biological activity on compression of municipal solid waste in bioreactor landfills.” In Proc., Global Waste Management Symp. 2008. New York: Penton Media.
Bareither, C. A., R. J. Breitmeyer, L. L. Meyer, C. H. Benson, T. B. Edil, and M. A. Barlaz. 2010. “Mechanical and environmental characterization of excavated and processed municipal solid waste.” In Proc., Global Waste Management Symp. 2010. Orlando, FL: Penton Media.
Bear, J. 1972. Dynamics of fluids in porous media, 764. New York: Dover.
Beaven, R., and W. Powrie. 1995. “Determination of the hydrogeological and geotechnical properties of refuse in relation to sustainable landfilling.” In Proc., Int. Madison Waste Conf., 435–454. Madison, WI: Univ. of Wisconsin–Madison.
Beaven, R. P., W. Powrie, and K. Zardava. 2008. " Hydraulic properties of MSW.” In Proc., Geotechnical Characterization, Field Measurement, and Laboratory Testing of Municipal Solid Waste. Presented at the Int. Symp. on Waste Mechanics 2008, 1–43. Reston, VA: ASCE.
Benson, C. 2010. “Predictions in geoenvironmental engineering: Recommendations for reliable predictive modeling.” In Proc., GeoFlorida 2010, Advances in Analysis, Modeling, and Design, edited by D. Fratta, A. Puppula, and B. Muhunthan, 1–13. Reston, VA: ASCE.
Benson, C., and R. Breitmeyer. 2010. “Using inversion to improve prediction in geoenvironmental engineering.” Geo-Strata 14 (1): 22–27.
Benson, C., and X. Wang. 1998. Soil water characteristic curves for solid waste (No. 98–13). Madison, WI: Environmental Geotechnics Program, Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison.
Bleiker, D. E., E. McBean, and G. Farquhar. 1993. “Refuse sampling and permeability testing at the Brock West and Keele Valley landfills.” In Proc., Int. Madison Waste Conf. Madison, WI: Univ. of Wisconsin–Madison.
Brandl, H. 1994. “Vertical barriers for municipal and hazardous waste containment.” In Development in geotechnical engineering, edited by S. W. Hong, D. T. Bergado, N. Phien-wej, and P. Nutalaya, 301–320. Rotterdam, Netherlands: A.A. Balkema.
Breitmeyer, R. J. 2011. “Hydraulic characterization of municipal solid waste.” Ph.D. dissertation, Dept. of Civil and Environmental Engineering, Univ. of Wisconsin–Madison.
Breitmeyer, R. J., C. A. Bareither, C. H. Benson, T. B. Edil, and M. A. Barlaz. 2008. “Field-scale lysimeter experiment to study hydrologic and mechanical properties of municipal solid waste.” In Proc., Global Waste Management Symp. 2008, 1–9. Orlando, FL: Penton Media.
Breitmeyer, R. J., and J. C. H. Benson. 2014. “Evaluation of parameterization techniques for unsaturated hydraulic conductivity functions for municipal solid waste.” Geotech. Test. J. 37 (4): 597–612. https://doi.org/10.1520/GTJ20130132.
Breitmeyer, R. J., and L. Fissel. 2017. "Uncertainty of soil water characteristic curve measurements using an automated evaporation technique.” Vadose Zone J. 16 (13). https://doi.org/10.2136/vzj2017.07.0136.
Breitmeyer, R. J., L. L. Meyer, C. A. Bareither, C. H. Benson, T. B. Edil, and M. A. Barlaz. 2010. “Calibration of time domain reflectometry water content sensors in municipal solid waste.” In Proc., Global Waste Management Symp. 2010. Orlando, FL: Penton Media.
Chen, T., and D. P. Chynoweth. 1995. “Hydraulic conductivity of compacted municipal solid waste.” Bioresour. Technol. 51 (2): 205–212. https://doi.org/10.1016/0960-8524(94)00127-M.
Daniel, D. E., and C. H. Benson. 1990. “Water content-density criteria for compacted soil liners.” J. Geotech. Eng. 116 (12): 1811–1830. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1811).
Dixon, N., and U. Langer. 2006. “Development of a MSW classification system for the evaluation of mechanical properties.” Waste Manage. 26 (3): 220–232. https://doi.org/10.1016/j.wasman.2005.02.018.
Durmusoglu, E., I. M. Sanchez, and M. Y. Corapcioglu. 2006. “Permeability and compression characteristics of municipal solid waste samples.” Environ. Geol. 50 (6): 773–786. https://doi.org/10.1007/s00254-006-0249-6.
Durner, W., U. Jansen, and S. C. Iden. 2008. “Effective hydraulic properties of layered soils at the lysimeter scale determined by inverse modelling.” Eur. J. Soil Sci. 59 (1): 114–124. https://doi.org/10.1111/j.1365-2389.2007.00972.x.
Eleazer, W. E., W. S. Odle, Y.-S. Wang, and M. A. Barlaz. 1997. “Biodegradability of municipal solid waste components in laboratory-scale landfills.” Environ. Sci. Technol. 31 (3): 911–917. https://doi.org/10.1021/es9606788.
Francois, V., G. Feuillade, N. Skhiri, T. Lagier, and G. Matejka. 2006. “Indicating the parameters of the state of degradation of municipal solid waste.” J. Hazard. Mater. 137 (2): 1008–1015. https://doi.org/10.1016/j.jhazmat.2006.03.026.
Gabr, M. A., and S. N. Valero. 1995. “Geotechnical properties of municipal solid waste.” Geotech. Test. J. 18 (2): 241–251. https://doi.org/10.1520/GTJ10324J.
Gribb, M. M. 1996. "Parameter estimation for determining hydraulic properties of a fine sand from transient flow measurements.” Water Resour. Res. 32: 1965–1974. https://doi.org/10.1029/96WR00894.
Han, B., V. Scicchitano, and P. T. Imhoff. 2011. "Measuring fluid flow properties of waste and assessing alternative conceptual models of pore structure.” Waste Manage. 31: 445–456. https://doi.org/10.1016/j.wasman.2010.09.021.
Haydar, M. M., and M. V. Khire. 2005. “Leachate recirculation using horizontal trenches in bioreactor landfills.” J. Geotech. Geoenviron. Eng. 131 (7): 837–847. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(837).
Hossain, M. S., K. K. Penmethsa, and L. Hoyos. 2009. “Permeability of solid waste in bioreactor landfill with degradation.” Geotech. Geol. Eng. 27 (1): 43–51. https://doi.org/10.1007/s10706-008-9210-7.
Hull, R. M., U. Krogmann, and P. F. Strom. 2005. “Composition and characteristics of excavated materials from a New Jersey landfill.” J. Environ. Eng. 131 (3): 478–490. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(478).
Jain, P., J. Powel, T. G. Townsend, and D. R. Reinhart. 2006. “Estimating the hydraulic conductivity of landfilled municipal solid waste using the borehole permeameter test.” J. Environ. Eng. 132 (6): 645–652. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:6(645).
Jang, Y. S., Y. W. Kim, and S. I. Lee. 2002. “Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea.” Waste Manage. 22 (3): 261–267. https://doi.org/10.1016/S0956-053X(01)00019-8.
Kazimoglu, Y. K., J. R. McDougall, and I. C. Pyrah. 2006. "Unsaturated hydraulic conductivity of landfilled waste.” In Proc., 4th Int. Conf. on Unsaturated Soils, 1525–1534. Reston, VA: ASCE.
Kool, J. B., and J. C. Parker. 1988. “Analysis of the inverse problem for transient unsaturated flow.” Water Resour. Res. 24 (6): 817–830. https://doi.org/10.1029/WR024i006p00817.
Korfiatis, G. P., A. C. Demetracopoulos, E. L. Bourodimos, and E. G. Nawy. 1984. “Moisture transport in a solid waste column.” J. Environ. Eng. 110 (4): 780–796. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:4(780).
Landva, A., and J. Clark. 1986. “Geotechnical testing of waste fill.” In Proc., Canadian Geotechnical Conf., 371–175. Richmond, BC, Canada: Canadian Geotechnical Society.
McCreanor, P. T., and D. R. Reinhart. 2000. “Mathematical modeling of leachate routing in a leachate recirculating landfill.” Water Resour. 34 (4): 1285–1295. https://doi.org/10.1016/S0043-1354(99)00243-2.
McDougall, J. R., R. W. Sarsby, and N. J. Hill. 1996. “A numerical investigation of landfill hydraulics using variably saturated flow theory.” Geotechnique 46 (2): 329–341. https://doi.org/10.1680/geot.1996.46.2.329.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. 3rd ed., 577. Hoboken, NJ: Wiley.
Mualem, Y. 1976. “A new model for predicting the hydraulic conductivity of unsaturated porous media.” Water Resour. Res. 12 (3): 513–522. https://doi.org/10.1029/WR012i003p00513.
Olivier, F., and J. P. Gourc. 2007. “Hydro-mechanical behavior of municipal solid waste subject to leachate recirculation in a large-scale compression reactor cell.” Waste Manage. 27 (1): 44–58. https://doi.org/10.1016/j.wasman.2006.01.025.
Olsen, H. W. 1962. “Hydraulic flow through unsaturated clay.” In Proc., 9th National Conf. on Clays and Clay Minerals, 131–161. West Lafayette, IN: Pergamon.
Oweiss, I. S., D. A. Smith, R. B. Ellwood, and D. S. Greene. 1990. “Hydraulic characteristics of municipal refuse.” J. Geotech. Eng. 116 (4): 539–553. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(539).
Owens, J. M., and D. P. Chynoweth. 1993. “Biochemical methane potential of municipal solid waste (MSW) components.” Water Sci. Technol. 27 (2): 1–14. https://doi.org/10.2166/wst.1993.0065.
Parker, J. C., J. B. Kool, and M. T. van Genuchten. 1985. “Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: II. Experimental studies.” Soil Sci. Soc. Am. J. 49 (6): 1354–1359. https://doi.org/10.2136/sssaj1985.03615995004900060005x.
Powrie, W., R. Beaven, and A. Hudson. 2008. " The influence of landfill gas on the hydraulic conductivity of waste.” In Proc., GeoCongress 2008, 264–271. Reston, VA: ASCE.
Powrie, W., and R. P. Beaven. 1999. “Hydraulic properties of household waste and applications for landfills.” Geotech. Eng. 137 (4): 235–237. https://doi.org/10.1680/gt.1999.370409.
Powrie, W., R. P. Beaven, D. S. Holmes, and A. P. Hudson. 2013. “Coupled phenomena in environmental geotechnics: From theoretical and experimental research to practical applications.” In Proc., Int. Symp. on ISSMGE TC 215, 61–67. Abingdon, UK: Taylor & Francis Group.
Reddy, K., R. H. Hettiarachchi, J. Gangathulasi, and J. E. Bogner. 2011. “Geotechnical properties of municipal solid waste at different phases of biodegradation.” Waste Manage. 31 (11): 2275–2286. https://doi.org/10.1016/j.wasman.2011.06.002.
Reddy, K. R., H. Hettiarachchi, N. Parakalla, J. Gangathulasi, J. Bogner, and T. Lagier. 2009. “Hydraulic conductivity of MSW in landfills.” J. Environ. Eng. 135 (8): 677–683. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000031.
Reddy, K. R., H. S. Kulkarni, and R. K. Giri. 2015. “Modeling coupled hydro-mechanical behavior of landfilled waste in bioreactor landfills: Numerical formulation and validation.” J. Hazard. Toxic Radioact. Waste 21 (1): D4015004. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000289.
Samarasinghe, A. M., Y. H. Huang, and V. P. Drnevich. 1982. “Permeability and consolidation of normally consolidated soils.” J. Geotech. Eng. Div. 108 (6): 835–850.
Scanlon, B., R. R. W. Healy, and P. G. Cook. 2002. “Intercode comparisons for simulating water balance of surficial sediments in semiarid regions.” Water Resour. Res. 38 (12): 59-1–59-16. https://doi.org/10.1029/2001WR001233.
Schaap, M. G., and F. J. Leij. 2000. "Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model.” Soil Sci. Soc. Am. J. 64: 843. https://doi.org/10.2136/sssaj2000.643843x.
Simunek, J., R. Angulo-Jaramillo, M. G. Schaap, J. Vandervaere, and M. T. van Genuchten. 1998. “Using an inverse method to estimate the hydraulic properties of crusted soils from tension-disc infiltrometer data.” Geoderma 86 (1–2): 61–81. https://doi.org/10.1016/S0016-7061(98)00035-4.
Simunek, J., and M. T. van Genuchten. 1996. “Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion.” Water Resour. Res. 32 (9): 2683–2696. https://doi.org/10.1029/96WR01525.
Simunek, J., M. T. van Genuchten, and M. Sejna. 2006. The HYDRUS software package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably saturated media. Prague, Czech Republic: PC-Progress.
Staley, B. F., and M. A. Barlaz. 2009. “Composition of municipal solid waste in the United States and implications for carbon sequestration and methane yield.” J. Environ. Eng. 135 (10): 901–909. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000032.
Stoltz, G., and J. P. Gourc. 2007. “Influence of compressibility of domestic waste on fluid permeability.” In Proc., Sardinia 11th Int. Waste Management and Landfill Symp., 1–8. Cagliari, Italy: CISA, Environmental Sanitary Engineering Centre.
Stoltz, G., A.-J. Tinet, M. J. Staub, L. Oxarango, and J.-P. Gourc. 2012. “Moisture retention properties of municipal solid waste in relation to compression.” J. Geotech. Geoenviron. Eng. 138: 535–543. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000616.
Townsend, T. G., W. L. Miller, and J. F. K. Earle. 1995. “Leachate-recycle infiltration ponds.” J. Environ. Eng. 121 (6): 465–471. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:6(465).
van Genuchten, M. T. 1980. “Closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Zardava, K. 2012. “Moisture retention and near saturated flow in mechanically biologically treated (MBT) waste.” Ph.D. thesis, Faculty of Engineering and the Environment, Univ. of Southampton.
Zekkos, D., J. D. Bray, E. Kavazanjian Jr., N. Matasovic, E. M. Rathje, M. F. Riemer, and K. H. Stokoe. 2006. “Unit weight of municipal solid waste.” J. Geotech. Geoenviron. Eng. 132 (10): 1250–1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250).

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 145Issue 4April 2019

History

Received: Mar 20, 2018
Accepted: Oct 4, 2018
Published online: Feb 15, 2019
Published in print: Apr 1, 2019
Discussion open until: Jul 15, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Ronald J. Breitmeyer, A.M.ASCE [email protected]
Assistant Professor, Dept. of Geological Engineering, Univ. of Nevada, Reno, NV 89557 (corresponding author). Email: [email protected]
Craig H. Benson, F.ASCE [email protected]
Dean, School of Engineering, Univ. of Virginia, Charlottesville, VA 22903. Email: [email protected]
Tuncer B. Edil, Dist.M.ASCE [email protected]
Professor Emeritus, Dept. of Geological Engineering, Univ. of Wisconsin–Madison, Madison, WI 53706. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share