Abstract

Although siting of thermal energy storage systems in the vadose zone may be beneficial due to the low thermal conductivity of unsaturated soils, water phase change and vapor diffusion in soils surrounding geothermal heat exchangers may play important roles in both the heat injection and retention processes that are not considered in established design models for these systems. To better understand these roles, this study incorporates recently-developed coupled thermohydraulic constitutive relationships for unsaturated soils into a coupled heat transfer and water flow model that considers time-dependent, nonequilibrium water phase change and enhanced vapor diffusion. After calibration of key parameters using a tank-scale heating test on compacted silt, the subsurface response during 90 days of heat injection from a geothermal heat exchanger followed by 90 days of ambient cooling was investigated. Significant decreases in degree of saturation and thermal conductivity of the ground surrounding the heat exchanger were observed during the heat injection period that were not recovered during the cooling period. This effect can lead to a greater amount of heat retained in the ground beyond that estimated in conduction-based design models.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Funding from National Science Foundation grant CMMI 1230237 is much appreciated. The opinions are those of the authors alone and do not reflect the viewpoint of the sponsor.

References

Acuña, J., M. Fossa, P. Monzó, and B. Palm. 2012. “Numerically generated G-functions for ground coupled heat pump applications.” In Proc., COMSOL Multiphysics Conf., Milan, 1–6. Brescia, Italy: COMSOL.
Armstrong, J. E., E. O. Frind, and R. D. McClellan. 1994. “Nonequilibrium mass transfer between the vapor, aqueous, and soil-phases in unsaturated soils during vapor extraction.” Water Resour. Res. 30 (2): 355–368. https://doi.org/10.1029/93WR02481.
Baladi, J. Y., D. L. Ayers, and R. J. Schoenhals. 1981. “Transient heat and mass transfer in soils.” Int. J. Heat Mass Transfer. 24 (3): 449–458. https://doi.org/10.1016/0017-9310(81)90053-3.
Başer, T., Y. Dong, N. Lu, and J. S. McCartney. 2016a. “Role of considering non-constant soil thermal parameters in the simulation of geothermal heat storage systems in the vadose zone.” In Challenges and Innovations in Geotechnics: Proc., 8th Asian Young Geotechnical Engineers Conf., edited by A. Zhussupbekov, 137–142. Boca Raton, FL: CRC Press.
Başer, T., N. Lu, and J. S. McCartney. 2016b. “Operational response of a soil-borehole thermal energy storage system.” J. Geotech. Geoenviron. Eng. 142 (4): 04015097. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001432.
Başer, T., T. Traore, and J. S. McCartney. 2016c. “Physical modeling of coupled heat transfer and water flow in soil-borehole thermal energy storage systems in the vadose zone.” In Geothermal energy: An important resource, edited by C. B. Dowling, L. J. Florea, and K. Neumann, eds., 81–93. Boulder, CO: GSA Books.
Bear, J. 1972. Dynamics of fluids in porous media, 764. Mineola, NY: Dover.
Beier, R. A., J. Acuña, P. Mogensen, and B. Palm. 2014. “Transient heat transfer in a coaxial borehole heat exchanger.” Geothermics 51 (Jul): 470–482. https://doi.org/10.1016/j.geothermics.2014.02.006.
Bénet, J. C., and P. Jouanna. 1982. “Phenomenological relation of phase change of water in a porous-medium-experimental verification and measurement of the phenomenological coefficient.” Int. J. Heat Mass Trans. 25 (11): 1747–1754. https://doi.org/10.1016/0017-9310(82)90154-5.
Bénet, J. C., A. L. Lozano, F. Cherblanc, and B. Cousin. 2009. “Phase change of water in a hygroscopic porous medium: Phenomenological relation and experimental analysis for water in soil.” J. Non-Equilibr. Thermodyn. 34 (2): 133–153. https://doi.org/10.1515/JNETDY.2009.008.
Bixler, N. E. 1985. NORIA: A finite element computer program for analyzing water, vapor, air and energy transport in porous media. Albuquerque, NM: Sandia National Laboratories.
Bouyoucos, G. J. 1915. “Effect of temperature on movement of water vapor and capillary moisture in soils.” J. Agric. Res. 5 (4): 141–172.
Campbell, G. S. 1985. Soil physics with BASIC: Transport models for soil–plant systems. New York: Elsevier.
Campbell, G. S., J. D. Jungbauer, W. R. Bidlake, and R. D. Hungerford. 1994. “Predicting the effect of temperature on soil thermal conductivity.” Soil Sci. 158 (5): 307–313. https://doi.org/10.1097/00010694-199411000-00001.
Cass, A., G. S. Campbell, and T. L. Jones. 1984. “Enhancement of thermal water vapor diffusion in soil.” Soil Sci. Soc. Am. 48 (1): 25–32. https://doi.org/10.2136/sssaj1984.03615995004800010005x.
Catolico, N., S. Ge, and J. S. McCartney. 2016. “Numerical modeling of a soil-borehole thermal energy storage system.” Vadose Zone J. 15 (1): 1–17. https://doi.org/10.2136/vzj2015.05.0078.
Chammari, A., B. Naon, F. Cherblanc, B. Cousin, and J. C. Bénet. 2008. “Interpreting the drying kinetics of a soil using a macroscopic thermodynamic nonequilibrium of water between the liquid and vapor phase.” Drying Technol. 26 (7): 836–843. https://doi.org/10.1080/07373930802135998.
Chapuis, S., and M. Bernier. 2009. “Seasonal storage of solar energy in borehole heat exchangers.” In Proc. IBPSA Conf. Building Simulations, 599–606. Toronto: IBPSA.
Ciriello, V., M. Bottarelli, V. Di Federico, and D. M. Tartakovsky. 2015. “Temperature fields induced by geothermal devices.” Energy 93 (2): 1896–1903. https://doi.org/10.1016/j.energy.2015.10.052.
Claesson, J., and G. Hellström. 1981. “Model studies of duct storage systems.” New energy conservation technologies and their commercialization, edited by J. P. Millhone and E. H. Willis, eds., 762–778. Berlin, Germany: Springer.
Cleall, P. J., S. C. Seetharam, and H. R. Thomas. 2007. “Inclusion of some aspects of chemical behaviour of unsaturated soil in thermo/hydro/chemical/mechanical models. I: Model development.” J. Eng. Mech. 133 (3): 338–347. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:3(338).
Cleall, P. J., R. M. Singh, and H. R. Thomas. 2011. “Non-isothermal moisture movement in unsaturated kaolin: An experimental and theoretical investigation.” Geotech. Test. J. 34 (5): 514–524. https://doi.org/10.1520/GTJ103585.
Côté, J., and J. M. Konrad. 2005. “Thermal conductivity of base course materials.” Can. Geotech. J. 42 (1): 61–78. https://doi.org/10.1139/cgj-2017-0447.
Dong, Y., J. S. McCartney, and N. Lu. 2015. “Critical review of thermal conductivity models for unsaturated soils.” Geotech. Geol. Eng. 33 (2): 207–221. https://doi.org/10.1007/s10706-015-9843-2.
Eskilson, P. 1987. Thermal analysis of heat extraction boreholes. Lund, Sweden: Lund Univ.
Ewen, J. 1988. “Thermal instability in gently heated unsaturated sand.” Int. J. Heat Mass Transfer 31 (8): 1701–1710. https://doi.org/10.1016/0017-9310(88)90282-7.
Ewen, J., and H. R. Thomas. 1989. “Heating unsaturated medium sand.” Géotechnique 39 (3): 455–470. https://doi.org/10.1680/geot.1989.39.3.455.
Farouki, O. T. 1981. Thermal properties of soils. Monograph 81-1, 136. Hanover, New Hampshire: U.S. Army Cold Regions Research and Engineering Laboratory Hanover.
Gehlin, S. 2002. “Thermal response test: Method development and evaluation.” Doctoral thesis, Lulea Univ. of Technology.
Gens, A., A. Garcia Molina, S. Olivella, E. E. Alonso, and F. Huertas. 1998. “Analysis of a full scale in-situ test simulating repository conditions.” Int. J. Numer. Anal. Methods Geomech. 22 (7): 515–548. https://doi.org/10.1002/(SICI)1096-9853(199807)22:7%3C515::AID-NAG926%3E3.0.CO;2-8.
Gens, A., M. Sánchez, L. Guimarães, E. E. Alonso, A. Lloret, S. Olivella, M. V. Villar, and F. Huertas. 2009. “A full scale in situ heating test for high level nuclear waste disposal: Observations, analysis and interpretation.” Géotechnique 59 (4): 377–399. https://doi.org/10.1680/geot.2009.59.4.377.
Gens, A., J. Vaunat, B. Garitte, and Y. Wileveau. 2007. “In situ behaviour of a stiff layered clay subject to thermal loading: Observations and interpretation.” Géotechnique 57 (2): 207–228. https://doi.org/10.1680/geot.2007.57.2.207.
Grant, S. A., and A. Salehzadeh. 1996. “Calculations of temperature effects on wetting coefficients of porous solids and their capillary pressure functions.” Water Resour. Res. 32 (2): 261–270. https://doi.org/10.1029/95WR02915.
Guimarães, L. D., A. Gens, M. Sánchez, and S. Olivella. 2013. “A chemo-mechanical constitutive model accounting for cation exchange in expansive clays.” Géotechnique 63 (3): 221–234. https://doi.org/10.1680/geot.SIP13.P.012.
Guimarães, L. M., A. Gens, and S. Olivella. 2007. “Coupled thermo-hydro-mechanical and chemical analysis of expansive clay subjected to heating and hydration.” Transp. Porous Media 66 (3): 341–372. https://doi.org/10.1007/s11242-006-0014-z.
Gurr, C. G., T. J. Marshall, and J. T. Hutton. 1952. “Movement of water in soil due to a temperature gradient.” Soil Sci. 74 (5): 335–346. https://doi.org/10.1097/00010694-195211000-00001.
Hillel, D. 1980. Fundamental of soil physics. San Diego, CA: Academic Press.
Ingersoll, L. R., and H. J. Plass. 1948. “Theory of the ground pipe heat source for the heat pump.” ASHVE Transactions 54: 119–122.
Ingersoll, L. R., O. J. Zobel, and A. C. Ingersoll. 1954. Heat conduction with engineering, geological, and other applications, 325. Revised ed. Madison, WI: Univ. of Wisconsin Press.
Kavanaugh, S. P. 1998. “Design method for hybrid ground-source heat pumps.” ASHRAE Transact. 104 (2): 691–698.
Lamarche, L., and B. Beauchamp. 2007. “A new contribution to the finite line-source model for or geothermal boreholes.” Energy Build. 39 (2): 188–198. https://doi.org/10.1016/j.enbuild.2006.06.003.
Lide, D. R., ed. 2001. Handbook of chemistry and physics. Boca Raton, FL: CRC Press.
Lozano, A. L., F. Cherblanc, B. Cousin, and J. C. Benet. 2008. “Experimental study and modelling of the water phase change kinetics in soils.” Eur. J. Soil Sci. 59 (5): 939–949. https://doi.org/10.1111/j.1365-2389.2008.01050.x.
Lu, N., and Y. Dong. 2015. “A closed form equation for thermal conductivity of unsaturated soils at room temperature.” J. Geotech. Geoenviron. Eng. 141 (6): 04015016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001295.
McCartney, J. S., T. Başer, N. Zhan, N. Lu, S. Ge, and K. Smits. 2017. “Storage of solar thermal energy in borehole thermal energy storage systems.” IGSHPA Technical Conf. and Expo, 1–8. Leeds, UK: University of Leeds.
McCartney, J. S., S. Ge, A. Reed, N. Lu, and K. Smits. 2013. “Soil-borehole thermal energy storage systems for district heating.” In Proc., European Geothermal Congress 2013, 1–10. Brussels, Belgium: European Geothermal Energy Council.
Millington, R. J., and J. M. Quirk. 1961. “Permeability of porous solids.” Trans. Faraday Soc. 57: 1200–1207. https://doi.org/10.1039/tf9615701200.
Monteith, J. L., and M. H. Unsworth 1990. Principles of environmental physics. New York: Routledge Chapman and Hall.
Moradi, A. M., K. Smits, N. Lu, and J. S. McCartney. 2016. “3-D experimental and numerical investigation of heat transfer in unsaturated soil with an application to soil borehole thermal energy storage (SBTES) systems.” Vadose Zone J. 15 (10): 1–17. https://doi.org/10.2136/vzj2016.03.0027.
Moradi, A. M., K. Smits, J. Massey, A. Cihan, and J. S. McCartney. 2015. “Impact of coupled heat transfer and water flow on soil borehole thermal energy storage (SBTES) systems: Experimental and modeling investigation.” Geothermics 57 (Sep): 56–72. https://doi.org/10.1016/j.geothermics.2015.05.007.
Nordell, B., and G. Hellström. 2000. “High temperature solar heated seasonal storage system for low temperature heating of buildings.” Solar Energy 69 (6): 511–523.
Olivella, S., A. Gens, J. Carrera, and E. E. Alonso. 1996. “Numerical formulation for a simulator (CODE-BRIGHT) for the coupled analysis of saline media.” Eng. Comput. 13 (7): 87–112. https://doi.org/10.1108/02644409610151575.
Ozudogru, T. Y., O. Ghasemi-Fare, C. G. Olgun, and P. Basu. 2015. “Numerical modeling of vertical geothermal heat exchangers using finite difference and finite element techniques.” Geotech. Geol. Eng. 33 (2): 291–306. https://doi.org/10.1007/s10706-014-9822-z.
Penman, H. L. 1940. “Gas and vapor movement in soil: I. The diffusion of vapors in porous solids.” J. Agric. Sci. 30 (03): 437–462. https://doi.org/10.1017/S0021859600048164.
Philip, J. R., and D. A. de Vries. 1957. “Moisture movement in porous materials under temperature gradients.” Trans. Am. Geophys. Union 38 (2): 222–232. https://doi.org/10.1029/TR038i002p00222.
Saito, H., J. Simunek, and B. P. Mohanty. 2006. “Numerical analysis of coupled water, vapor, and heat transport in the vadose zone.” Vadose Zone J. 5 (2): 784–800. https://doi.org/10.2136/vzj2006.0007.
Shah, D. J., J. W. Ramsey, and M. Wang. 1984. “An experimental determination of the heat and mass transfer coefficients in moist, unsaturated soils.” Int. J. Heat Mass Transfer 27 (7): 1075–1085. https://doi.org/10.1016/0017-9310(84)90123-6.
Sibbitt, B., D. McClenahan, R. Djebbar, J. Thornton, B. Wong, J. Carriere, and J. Kokko. 2012. “The performance of a high solar fraction seasonal storage district heating system—Five years of operation.” Energy Procedia 30: 856–865. https://doi.org/10.1016/j.egypro.2012.11.097.
Smith, W. O. 1943. “Thermal transfer of moisture in soils.” Am. Geophys. Union Trans. 24 (2): 511–524. https://doi.org/10.1029/TR024i002p00511.
Smits, K. M., A. Cihan, S. Sakaki, and T. H. Illangasekare 2011. “Evaporation from soils under thermal boundary conditions: Experimental and modeling investigation to compare equilibrium- and nonequilibrium-based approaches.” Water Resour. Res. 47: W05540. https://doi.org/10.1029/2010WR009533.
Smits, K. M., S. Sakaki, S. E. Howington, J. F. Peters, and T. H. Illangasekare. 2013. “Temperature dependence of thermal properties of sands across a wide range of temperatures (30–70 °C).” Vadose Zone J. 21 (1): 1–8. https://doi.org/10.2136/vzj2012.0033.
Tarn, J. Q., and Y. M. Wang. 2004. “End effects of heat conduction in circular cylinders of functionally graded materials and laminated composites.” Int. J. Heat Mass Transfer 47 (26): 5741–5747. https://doi.org/10.1016/j.ijheatmasstransfer.2004.08.003.
Thomas, H. R., and Y. He. 1997. “A coupled heat-moisture transfer theory for deformable unsaturated soil and its algorithmic implementation.” Int. J. Numer. Methods Eng. 40 (18): 3421–3441. https://doi.org/10.1002/(SICI)1097-0207(19970930)40:18%3C3421::AID-NME220%3E3.0.CO;2-C.
Thomas, H. R., Y. He, M. R. Sansom, and C. L. W. Li. 1996. “On the development of a model of the thermo-mechanical-hydraulic behavior of unsaturated soils.” Eng. Geol. 41 (1–4): 197–218. https://doi.org/10.1016/0013-7952(95)00033-X.
Thomas, H. R., and S. D. King. 1991. “Coupled temperature capillary potential variations in unsaturated soil.” J. Eng. Mech. 117 (11): 2475–2491. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2475).
Thomas, H. R., M. Sansom, and S. W. Rees. 2001. “Non-isothermal flow.” Environmental Geomechanics, 131–169. Vienna, Austria: Springer.
Thomas, H. R., and M. R. Sansom. 1995. “Fully coupled analysis of heat, moisture and air transfer in unsaturated soil.” J. Eng. Mech. 121 (3): 392–405. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:3(392).
Trautz, A. C., K. M. Smits, and A. Cihan. 2015. “Continuum-scale investigation of evaporation from bare soil under different boundary and initial conditions: An evaluation of nonequilibrium phase change.” Water Resour. Res. 51 (9): 7630–7648. https://doi.org/10.1002/2014WR016504.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Wayllace, A., and N. Lu. 2012. “A transient water release and imbibitions method for rapidly measuring wetting and drying soil water retention and hydraulic conductivity functions.” Geotech. Test. J. 35 (1): 103–117. https://doi.org/10.1520/GTJ103596.
Welsch, B., W. Rühaak, D. O. Schulte, K. Bär, S. Homuth, and I. Sass. 2015. “Comparative study of medium deep borehole thermal energy storage systems using numerical modelling.” In Proc., World Geothermal Congress 2015, 1–6. Bochum, Germany: International Geothermal Association.
Whitaker, S. 1977. “Simultaneous heat, mass and momentum transfer in porous media: A theory of drying porous media.” Adv. Heat Transf. 13: 119–203. https://doi.org/10.1016/S0065-2717(08)70223-5.
Yavuzturk, C. 1999. “Modeling of vertical ground loop heat exchangers for ground source heat pump systems.” Ph.D. thesis, Oklahoma State Univ.
Zhang, J., and A. K. Datta. 2004. “Some considerations in modeling of moisture transport in heating of hygroscopic materials.” Drying Technol. 22 (8): 1983–2008. https://doi.org/10.1081/DRT-200032740.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 144Issue 7July 2018

History

Received: Feb 2, 2017
Accepted: Jan 22, 2018
Published online: May 3, 2018
Published in print: Jul 1, 2018
Discussion open until: Oct 3, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

T. Başer, Ph.D., A.M.ASCE [email protected]
Research Associate, Dept. of Civil and Environmental Engineering, Univ. of Alberta, 9211—116 St., NW Edmonton, AB, Canada T6G 1H9. Email: [email protected]
Y. Dong, Ph.D., A.M.ASCE [email protected]
Associate Professor, State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China. Email: [email protected]
A. M. Moradi, Ph.D. [email protected]
Research Associate, Dept. of Civil and Environmental Engineering, Center for Experimental Study of Subsurface Environmental Processes, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401. Email: [email protected]
N. Lu, Ph.D., F.ASCE [email protected]
Professor, Dept. of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401. Email: [email protected]
K. Smits, Ph.D. [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Center for Experimental Study of Subsurface Environmental Processes, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401. Email: [email protected]
S. Ge, Ph.D. [email protected]
Professor, Dept. of Geosciences, Univ. of Colorado Boulder, Boulder, CO 80309-0399. Email: [email protected]
D. Tartakovsky, Ph.D. [email protected]
Professor, Dept. of Energy Resources Engineering, Stanford Univ., 367 Panama St., Stanford, CA 94305. Email: [email protected]
J. S. McCartney, Ph.D., M.ASCE [email protected]
P.E.
Associate Professor, Dept. of Structural Engineering, Univ. of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0085 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share