Case Studies
Mar 23, 2017

Progression of Elevated Temperatures in Municipal Solid Waste Landfills

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 143, Issue 8

Abstract

Elevated temperatures in municipal solid waste landfills can pose health, environmental, and safety risks because they can generate excessive gases, liquids, pressures, and heat that can damage landfill infrastructure. This paper discusses mechanisms that can lead to elevated temperatures in the landfill and presents a case history to establish trends in gas composition, leachate collection, settlement, and slope movement. In general, landfill gas composition changes from predominantly methane [50–60% volume-to-volume ratio (v/v)] and carbon dioxide (40–55% v/v) to a composition of carbon dioxide (60–80% v/v), hydrogen (10–35% v/v), and carbon monoxide [>1,500 parts per million per volume (ppmv)] as temperatures elevate. As waste temperatures increase, gas and leachate pressures also increase, resulting in odors, leachate outbreaks, and potential slope instability. These observations are summarized in a progression of elevated temperature indicators that are related to field manifestations and possible remedial measures. Finally, biological and chemical processes are proposed to explain the changes in internal landfill processes.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge Andony Landivar and Mario Hernandez for assistance in data reduction and preparation of the manuscript. The contents and views in this paper are those of the authors and do not necessarily reflect those of any landfill owner or operator, homeowners, consultants, regulatory agency or personnel, or anyone else involved in case studies referenced. In particular, the contents of this paper are the personal opinions of the authors and may not reflect the opinions, conclusions, policies or procedures of the California Environmental Protection Agency or CalRecycle.

References

Antal, M. J., Friedman, H. L., and Rogers, F. E. (1980). “Kinetics of cellulose pyrolysis in nitrogen and steam.” Combust. Sci. Tech., 21(3–4), 141–152.
Anthony, E. J., Jia, L., Caris, M., Preto, F., and Burwell, S. (1999). “An examination of the exothermic nature of fluidized bed combustion (FBC) residues.” Waste Manage., 19(4), 293–305.
Bareither, C. A., Benson, C. H., and Edil, T. B. (2012a). “Compression of municipal solid waste in bioreactor landfills: Mechanical creep and biocompression.” J. Geotech. Geoenviron. Eng., 1007–1021.
Bareither, C. A., Breitmeyer, R. J., Benson, C. H., Barlaz, M. A., and Edil, T. B. (2012b). “Deer track bioreactor experiment: Field-scale evaluation of municipal solid waste bioreactor performance.” J. Geotech. Geoenviron. Eng., 658–670.
Bareither, C. A., Wolfe, G. L., McMahon, K. D., and Benson, C. H. (2013). “Microbial diversity and dynamics during methane production from municipal solid waste.” Waste Manage., 33(10), 1982–1992.
Barlaz, M. A., Staley, B. F., and de los Reyes, F. L. (2010). “Anaerobic biodegradation of solid waste.” Environmental microbiology, R. Mitchell and J.-D. Gu, eds., 2nd Ed., Wiley-Blackwell, Hoboken, NJ, 281–299.
Bates, M. (2004). “Managing landfill site fires in Northamptonshire.” Northamptonshire County Council, Northampton, U.K.
Bergström, J., and Björner, B. (1992). “Dioxins and fires in waste storage.”, REFORSK Foundation, Malmö, Sweden.
Bjarngard, A., and Edgers, L. (1990). “Settlement of municipal solid waste landfills.” Proc., 13th Annual Madison Waste Conf., Univ. of Wisconsin-Madison, Madison, WI, 192–205.
Blight, G. (2008). “Slope failures in municipal solid waste dumps and landfills: A review.” Waste Manage. Res., 26(5), 448–463.
Bogner, J., Rose, C., Vogt, M., and Gartman, D. (1988). “Understanding landfill gas generation and migration.” Proc., 11th Annual Int. Landfill Gas Symp., Government Refuse Collection and Disposal Association, Silver Spring, MD, 225–242.
Bott, M., and Thauer, R. K. (1987). “Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria.” Eur. J. Biochem., 168(2), 407–412.
Buah, W. K., Cuncliffe, A. M., and Williams, P. T. (2007). “Characterization of products from the pyrolysis of municipal solid waste.” Process Saf. Environ., 85(5), 450–457.
Calder, G. V., and Stark, T. D. (2010). “Aluminum reactions and problems in municipal solid waste landfills.” Pract. Period. Hazard. Toxic Radioact. Waste Manage., 258–265.
Cecchi, F., Pavan, P., Musacco, A., Mata Álvarez, J., and Vallini, G. (1993). “Digesting the organic fraction of municipal solid waste: Moving from mesophilic (37°C) to thermophilic (55°C) conditions.” Waste Manage. Res., 11(5), 403–414.
Christensen, T. H., Cossu, R., and Stegmann, R., eds. (1996). Landfilling of waste: Biogas, E & FN Spon, London.
Christensen, T. H., Manfredi, S., and Knox, K. (2011). “Landfilling: Reactor landfills.” Solid waste technology and management, T. H. Christensen, ed., Blackwell, Chichester, U.K., 772–787.
Chrysikou, L., Gemenetzis, P., Kouras, A., Manoli, E., Terzi, E., and Samara, C. (2008). “Distribution of persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece.” Environ. Int., 34(2), 210–225.
Copping, S., Quinn, C., and Gregory, R. (2007). “Review and investigation of deep-seated fires within landfill sites.”, Environment Agency, Bristol, U.K.
Crutcher, A. J., Rovers, F. A., and McBean, E. A. (1982). “Temperature as an indicator of landfill behavior.” Water Air Soil Pollut., 17(2), 213–223.
De Haan, J. D. (2006). Kirk’s fire investigation, 6th Ed., Prentice Hall, Upper Saddle River, NJ.
Demirel, E., and Azcan, N. (2012). “Thermodynamic modeling of water-gas shift reaction in supercritical water.” Proc., World Congress on Engineering and Computer Science, S. I. Ao, C. Douglas, W. S. Grundfest, and J. Burgstone, eds., International Association of Engineers, Hong Kong, 804–807.
Diekert, G., Hansch, M., and Conrad, R. (1984). “Acetate synthesis from 2 CO2 in acetogenic bacteria: Is carbon monoxide an intermediate?” Arch. Microbiol., 138(3), 224–228.
DMWM (Division of Materials and Waste Management). (2011). “Subsurface heating events at solid waste and construction and demolition debris landfills: Best management practices.”, Ohio Environmental Protection Agency, Columbus, OH.
El-Fadel, M., Findikakis, A. N., and Leckie, J. O. (1997). “Environmental impacts of solid waste landfilling.” J. Environ. Manage., 50(1), 1–25.
El-Fadel, M., Shazbak, S., Saliby, E., and Leckie, J. O. (1999). “Comparative assessment of settlement models for municipal solid waste landfill applications.” Waste Manage. Res., 17(5), 347–368.
Emcon Associates. (1981). “State-of-the-art of methane gas enhancement in landfills.”, Argonne National Laboratory, Argonne, IL.
Ettala, M., Rahkonen, P., Rossi, E., Mangs, J., and Keski-Rahkonen, O. (1996). “Landfill fires in Finland.” Waste Manage. Res., 14(4), 377–384.
Eun, J., Tinjum, J. M., Benson, C. H., and Edil, T. B. (2014). “Volatile organic compound (VOC) transport through a composite liner with co-extruded geomembrane containing ethylene vinyl-alcohol (EVOH).” Geo-Congress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability, M. Abu-Farsakh, X. Yu, and L. R. Hoyos, eds., ASCE, Reston, VA, 1960–1969.
Farquhar, G. J., and Rovers, F. A. (1973). “Gas production during refuse decomposition.” Water Air Soil Pollut., 2(4), 483–495.
Fire, F. L. (1996). “Fire and pyrolysis.” The common sense approach to hazardous materials, 2nd Ed., PennWell, Tulsa, OK, 105–123.
Fluke. (2010). “51 & 52 Series II: Users manual.” Everett, WA.
Frid, V., et al. (2010). “Geophysical-geochemical investigation of fire-prone landfills.” Environ. Earth Sci., 60(4), 787–798.
Hanson, J. L., Yesiller, N., and Oettle, N. (2010). “Spatial and temporal temperature distributions in municipal solid waste landfills.” J. Environ. Eng., 804–814.
Hartz, K. E., Klink, R. E., and Ham, R. K. (1982). “Temperature effects: Methane generation from landfill samples.” J. Environ. Eng., 108(4), 629–638.
Haug, R. T. (1997). “Feedstocks, conditioning, and fire prevention.” BioCycle, 38(4), 68–70.
Hendron, D. M., Fernandez, G., Prommer, P. J., Giroud, J. P., and Orozco, L. F. (1999). “Investigation of the cause of the 27 September 1997 slope failure at the Doña Juana landfill.” Proc., Sardinia ‘99, 7th Int. Waste Management and Landfill Symp., Environmental Sanitary Engineering Centre, Cagliari, Italy, 545–554.
Hogland, W., and Marques, M. (2003). “Physical, biological and chemical processes during storage and spontaneous combustion of waste fuel.” Resour. Conserv. Recycl., 40(1), 53–69.
Hossain, M. S., and Gabr, M. A. (2005). “Prediction of municipal solid waste landfill settlement with leachate recirculation.” Proc., Geo-Frontiers 2005, A. Alshawabkeh, et al., eds., ASCE, Reston, VA, 1–14.
Houi, D., Paul, E., and Couturier, C. (1997). “Heat and mass transfer in landfills and biogas recovery.” Proc., Sardinia ‘97, 6th Int. Waste Management and Landfill Symp., Environmental Sanitary Engineering Centre, Cagliari, Italy, 101–108.
Hudgins, M., and Harper, S. (1999). “Operational characteristics of two aerobic landfill systems.” Proc., Sardinia ‘99, 7th Int. Waste Management and Landfill Symp., Environmental Sanitary Engineering Centre, Cagliari, Italy, 1–9.
Huggett, C. (1980). “Estimation of rate of heat release by means of oxygen consumption measurements.” Fire Mater., 4(2), 61–65.
Ishigaki, T., Yamada, M., Nagamori, M., Ono, Y., and Inoue, Y. (2005). “Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature.” Environ. Geol., 48(7), 845–853.
Jafari, N. H., Stark, T. D., and Merry, S. M. (2013). “The 10 July 2000 Payatas landfill slope failure.” Int. J. Geoeng. Case Histories, 2(3), 208–228.
Jafari, N. H., Stark, T. D., and Roper, R. (2014a). “Classification and reactivity of aluminum production waste.” J. Hazard. Toxic Radioact. Waste, .
Jafari, N. H., Stark, T. D., and Rowe, K. (2014b). “Service life of HDPE geomembranes subjected to elevated temperatures.” J. Hazard. Toxic Radioact. Waste, 16–26.
Kasali, G. B., and Senior, E. (1989). “Effects of temperature and moisture on the anaerobic digestion of refuse.” J. Chem. Tech. Biotechnol., 44(1), 31–41.
Kerfoot, H. B. (1993). “Landfill gas effects on groundwater samples at a municipal solid waste facility.” Proc., Sardinia ‘93, 4th Int. Landfill Symp., T. H. Christensen, R. Cossu, and R. Stegmann, eds., Environmental Sanitary Engineering Centre, Cagliari, Italy, 1141–1154.
Kjeldsen, P., and Fischer, E. V. (1995). “Landfill gas migration—Field investigations at Skellingsted Landfill, Denmark.” Waste Manage. Res., 13(5), 467–484.
Klein, R., Baumann, T., Kahapka, E., and Niessner, R. (2001). “Temperature development in a modern municipal solid waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management.” J. Hazard. Mater., 83(3), 265–280.
Klein, R., Nestle, N., Niessner, R., and Baumann, T. (2003). “Numerical modelling of the generation and transport of heat in a bottom ash monofill.” J. Hazard. Mater., 100(1–3), 147–162.
Koelsch, F., Fricke, K., Mahler, C., and Damanhuri, E. (2005). “Stability of landfills—The Bandung dumpsite disaster.” Proc., Sardinia 2005, 10th Int. Waste Management and Landfill Symp., R. Cossu and R. Stegmann, eds., Environmental Sanitary Engineering Centre, Cagliari, Italy.
Koerner, R. M., and Soong, T.-Y. (2000). “Leachate in landfills: The stability issues.” Geotext. Geomembr., 18(5), 293–309.
Kubler, H. (1982). “Heat release in thermally disintegrating wood.” Wood Fiber, 14(3), 166–177.
LANDTEC. (2010). “GEM2000 Plus operation manual.” Colton, CA.
Lee, M. Y., Cheon, J. H., Hidaka, T., and Tsuno, H. (2008). “The performance and microbial diversity of temperature-phased hyperthermophilic and thermophilic anaerobic digestion system fed with organic waste.” Water Sci. Technol., 57(2), 283–289.
Lefebvre, X., Lanini, S., and Houi, D. (2000). “The role of aerobic activity on refuse temperature rise. I: Landfill experimental study.” Waste Manage. Res., 18(5), 444–452.
Lewicki, R. (1999). “Early detection and prevention of landfill fires.” Proc., Sardinia ‘99, 7th Int. Waste Management and Landfill Symp., Environmental Sanitary Engineering Centre, Cagliari, Italy.
Lin, K.-S., Wang, H. P., Liu, S.-H., Chang, N.-B., Huang, Y.-J., and Wang, H.-C. (1999). “Pyrolysis kinetics of refuse-derived fuel.” Fuel Process. Technol., 60(2), 103–110.
Lönnermark, A., Blomquist, P., and Marklund, S. (2008). “Emission from simulated deep-seated fires in domestic waste.” Chemosphere, 70(4), 626–639.
Martin, J. W., Stark, T. D., Thalhamer, T., Gerbasi-Graf, G. T., and Gortner, R. E. (2013). “Detection of aluminum waste reactions and waste fires.” J. Hazard. Toxic Radioact. Waste, 164–174.
Mata Álvarez, J., and Martínez Viturtia, A. (1986). “Laboratory simulation of municipal solid waste fermentation with leachate recycle.” J. Chem. Tech. Biotechnol., 36(12), 547–556.
McBean, E. A., Rovers, F. A., and Farquhar, G. J. (1995). Solid waste landfill engineering and design, Prentice Hall, Englewood Cliffs, NJ.
McWatters, R., and Rowe, R. (2015). “Permeation of volatile organic compounds through EVOH thin film membranes and coextruded LLDPE/EVOH/LLDPE geomembranes.” J. Geotech. Geoenviron. Eng., 04014091.
Meraz, L., and Domínguez, A. (1998). “A calorimetric description of the digestion of organic matter in landfills.” Chem. Educator, 3(6), 1–6.
Merry, S. M., Fritz, W. U., Budhu, M., and Jesionek, K. (2005). “Effect of gas on pore pressures in wet landfills.” J. Geotech. Geoenviron. Eng., 553–561.
Merz, R. C., and Stone, R. (1970). “Special studies of a sanitary landfill.”, Bureau of Solid Waste Management, U.S. EPA, Rockville, MD.
Nammari, D. R., Hogland, W., Marques, M., Nimmermark, S., and Moutavtchi, V. (2004). “Emission from uncontrolled fire in municipal solid waste bales.” Waste Manage., 24(1), 9–18.
Nastev, M., Therrien, R., Lefebvre, R., and Gélinas, P. (2001). “Gas production and migration in landfills and geological materials.” J. Contam. Hydrol., 52(1–4), 187–211.
Neves, D., Thunman, H., Matos, A., Tarelho, L., and Gómez Barea, A. (2011). “Characterization and prediction of biomass pyrolysis products.” Prog. Energy Combust. Sci., 37(5), 611–630.
Nikolaou, K. (2008). “Environmental management and landfill fire accidents.” J. Environ. Prot. Ecol., 9(4), 830–834.
Ohlemiller, T. J. (1995). “Smoldering combustion.” SFPE handbook of fire protection engineering, 2nd Ed., P. M. DiNenno, et al. eds., National Fire Protection Association, Quincy, MA, 2-171–2-179.
Øygard, J. K., Måge, A., Gjengedal, E., and Svane, T. (2005). “Effect of an uncontrolled fire and the subsequent fire fight on the chemical composition of landfill leachate.” Waste Manage., 25(7), 712–718.
Pfeffer, J. T. (1974). “Temperature effects on anaerobic fermentation of domestic refuse.” Biotechnol. Bioeng., 16(6), 771–787.
Pitts, W. M. (2007). “Ignition of cellulosic fuels by heated and radiative surfaces.”, National Institute of Standards and Technology, Gaithersburg, MD.
Pitts, W. M., Johnsson, E. L., and Bryner, N. O. (1994). “Carbon monoxide formation in fires by high-temperature anaerobic wood pyrolysis.” Proc., 25th Symp. on Combustion, Combustion Institute, Pittsburgh, 1455–1462.
Powell, J., Jain, P., Kim, H., Townsend, T., and Reinhart, D. (2006). “Changes in landfill gas quality as a result of controlled air injection.” Environ. Sci. Technol., 40(3), 1029–1034.
Quintiere, J. G., Birky, M., Macdonald, F., and Smith, G. (1982). “An analysis of smoldering fires in closed compartments and their hazard due to carbon monoxide.” Fire Mater., 6(3–4), 99–110.
Rampling, T. W., and Hickey, T. J. (1988). “The laboratory characterization of refuse derived fuel.”, U.K. Dept. of Trade and Industry, London.
Rettenberger, G., and Stegmann, R. (1996). “Landfill gas components.” Landfilling of waste: Biogas, T. H. Christensen, R. Cossu, and R. Stegmann, eds., E & FN Spon, London, 51–58.
Riquier, L., Guerbois, M., Budka, A., Hebe, I., and Riviere, S. (2003). “Underground fire characterisation in landfills: Investigation methods.” Proc., Sardinia 2003, 9th Int. Waste Management and Landfill Symp., T. H. Christensen, R. Cossu, and R. Stegmann, eds. Environmental Sanitary Engineering Centre, Cagliari, Italy.
Riviere, S., Goumand, J. C., Guerbois, M., and Hebe, I. (2003). “Characterisation of underground fires in landfills using geophysical methods: A case study.” Proc., Sardinia 2003, 9th Int. Waste Management and Landfill Symp., T. H. Christensen, R. Cossu, and R. Stegmann, eds., Environmental Sanitary Engineering Centre, Cagliari, Italy.
Ruokojärvi, P., Ruuskanen, J., Ettala, M., Rahkonen, P., and Tarhanen, J. (1995). “Formation of polyaromatic hydrocarbons and polychlorinated organic compounds in municipal waste landfill fires.” Chemosphere, 31(8), 3899–3908.
Shafizadeh, F., and Bradbury, A. G. W. (1979). “Thermal degradation of cellulose in air and nitrogen at low temperatures.” J. Appl. Polym. Sci., 23(5), 1431–1442.
Shaw Environmental. (2008). “Area 3 work plan: Expanded heat and pressure investigation.” Illinois Environmental Protection Agency, Springfield, IL.
Sørum, L., Grønli, M. G., and Hustan, J. E. (2001). “Pyrolysis characteristics and kinetics of municipal solid wastes.” Fuel, 80(9), 1217–1227.
Sperling, T., and Henderson, J. P. (2001). “Understanding and controlling landfill fires.” Proc., 6th Annual Landfill Symp., Solid Waste Association of North America, Silver Spring, MD.
Stark, T. D., Akhtar, K., and Hussain, M. (2010). “Stability analyses for landfills experiencing elevated temperatures.” Proc., GeoFlorida 2010: Advances in Analysis, Modeling and Design, D. O. Fratta, A. J. Puppala, and B. Muhunthan, eds., ASCE Geo-Institute, Reston, VA, 3110–3119.
Stark, T. D., Martin, J. W., Gerbasi, G. T., Thalhamer, T., and Gortner, R. E. (2012). “Aluminum waste reaction indicators in a municipal solid waste landfill.” J. Geotech. Geoenviron. Eng., 252–261.
Stearns, R. P., and Petoyan, G. S. (1984). “Identifying and controlling landfill fires.” Waste Manage. Res., 2(1), 303–309.
Szczygielski, T. (2007). “Fire in the hole: Aluminum dross in landfills.” J. Natl. Resour. Environ. L., 22(2), 159–174.
Thauer, R. K. (1998). “Biochemistry of methanogenesis: A tribute to Marjory Stephenson.” Microbiology, 144(9), 2377–2406.
Ueno, Y., Fukui, H., and Goto, M. (2007). “Operation of a two-stage fermentation process producing hydrogen and methane from organic waste.” Environ. Sci. Technol., 41(4), 1413–1419.
USACE (U.S. Army Corps of Engineers). (2008). “Landfill off-gas collection and treatment systems.”, Washington, DC.
U.S. Fire Administration. (2002). “Landfill fires: Their magnitude, characteristics, and mitigation.”, Federal Emergency Management Agency, Emmitsburg, MD.
Wappett, H. L., and Zornberg, J. G. (2006). “Full scale monitoring for assessment of exothermal reactions in waste tires.”, Federal Highway Administration, Washington, DC.
Williams, G. M., and Aitkenhead, N. (1991). “Lessons from Loscoe: The uncontrolled migration of landfill gas.” Q. J. Eng. Geol., 24(2), 191–207.
Williams, P. T., and Besler, S. (1993). “The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor.” Fuel, 72(2), 151–159.
Williams, P. T., and Besler, S. (1996). “The influence of temperature and heating rate on the slow pyrolysis of biomass.” Renew. Energy, 7(3), 233–250.
Wittmann, S. G. (1985). “Landfill gas migration: Early warning signs, monitoring techniques and migration control systems.” Proc., 23rd Annual Int. Seminar, Equipment, Services, and Systems Show, Garbage Refuse Collection and Disposal Association, Silver Spring, MD, 317–328.
Yesiller, N., Hanson, J., and Liu, W. (2005). “Heat generation in municipal solid waste landfills.” J. Geotech. Geoenviron. Eng., 1330–1344.
Young, A. (1992). “Application of computer modelling to landfill processes.”, U.K. Dept. of the Environment, London.
Zerlottin, M., Refosco, D., Della Zassa, M., Biasin, A., and Canu, P. (2013). “Self-heating of dried wastewater sludge.” Waste Manage., 33(1), 129–137.
Zinder, S. H. (1993). “Physiological ecology of methanogens.” Methanogenesis: Ecology, physiology, biochemistry and genetics, J. G. Ferry, ed., Chapman & Hall, New York, 128–206.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 143Issue 8August 2017

History

Received: Aug 20, 2016
Accepted: Dec 1, 2016
Published online: Mar 23, 2017
Published in print: Aug 1, 2017
Discussion open until: Aug 23, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Navid H. Jafari, A.M.ASCE [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Louisiana State Univ., 3316 N Patrick Taylor Hall, Baton Rouge, LA 70803 (corresponding author). E-mail: [email protected]
Timothy D. Stark, F.ASCE [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of Illinois, 205 N. Mathews Ave., Urbana, IL 61801-2352. E-mail: [email protected]
Todd Thalhamer [email protected]
Civil Engineer, California Environmental Protection Agency, 1001 I St., Sacramento, CA 95812. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share