Technical Papers
May 22, 2015

Numerical Study on the Suitability of Centrifuge Testing for Capturing the Thermal-Induced Mechanical Behavior of Energy Piles

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 141, Issue 10

Abstract

Currently, the suitability of centrifuge testing for capturing the thermal-induced mechanical behavior of full-scale energy piles has not been established, yet, despite their increasing worldwide development. Looking at this challenge, this paper investigates through thermomechanical numerical analyses the capability of centrifuge tests to reproduce fundamental aspects of the response of full-scale energy piles in dry sand when subjected to thermal and mechanical loads. The analysis proves the appropriateness of centrifuge tests for the considered goal and comments on crucial points that have to be considered when modeling energy pile-related problems.

Get full access to this article

View all available purchase options and get full access to this article.

References

Agar, J. G., Morgenstern, N. R., and Scott, J. D. (1986). “Thermal-expansion and pore pressure generation in oil sands.” Can. Geotech. J., 23(3), 327–333.
Agar, J. G., Morgenstern, N. R., and Scott, J. D. (1987). “Shear strength and stress-strain behaviour of Athabasca oil sand at elevated temperatures and pressures.” Can. Geotech. J., 24(1), 1–10.
Amatya, B. L., Soga, K., Bourne-Webb, P. J., Amis, T., and Laloui, L. (2012). “Thermo-mechanical behaviour of energy piles.” Géotechnique, 62(6), 503–519.
Armaleh, S., and Desai, C. (1987). “Load-deformation response of axially loaded piles.” J. Geotech. Geoenviron. Eng., 1483–1500.
Baldi, G., Hueckel, T., and Pellegrini, R. (1988). “Thermal volume changes of the mineral water-system in low-porosity clay soils.” Can. Geotech. J., 25(4), 807–825.
Beringen, F., Windle, D., and Van Hooydonk, W. (1979). “Results of loading tests on driven piles in sand.” Institution of Civil Engineers, Civil Engineering, London, 213–225.
Bodas Freitas, T., Cruz Silva, F., and Bourne-Webb, P. (2013). “The response of energy foundations under thermo-mechanical loading.” Proc., 18th Int. Conf. on Soil Mechanics and Geotechnical Engineering, Comité Français de Mécanique des Sols et de Géotechnique, Paris, 3347–3350.
Bolton, M. (1986). “The strength and dilatancy of sands.” Géotechnique, 36(1), 65–78.
Bolton, M. (1987). “Discussion on the strength and dilatancy of sands.” Géotechnique, 37(2), 219–226.
Bransby, M., and Springman, S. (1996). “3-D finite element modelling of pile groups adjacent to surcharge loads.” Comput. Geotech., 19(4), 301–324.
Briaud, J.-L., and Tucker, L. M. (1988). “Measured and predicted axial response of 98 piles.” J. Geotech. Eng., 984–1001.
Burghignoli, A., Desideri, A., and Miliziano, S. (2000). “A laboratory study on the thermomechanical behaviour of clayey soils.” Can. Geotech. J., 37(4), 764–780.
Campanella, R. G., and Mitchell, J. K. (1968). “Influence of the temperature variations on soil behaviour.” J. Soil Mech. Found. Div., 94(SM3), 709–734.
Castelli, F., and Maugeri, M. (2002). “Simplified nonlinear analysis for settlement prediction of pile groups.” J. Geotech. Geoenviron. Eng., 76–84.
Cekerevac, C., and Laloui, L. (2004). “Experimental study of thermal effects on the mechanical behaviour of a clay.” Int. J. Numer. Anal. Methods Geomech., 28(3), 209–228.
Charlier, R. (1987). “Approche unifiée de quelques problèmes non linéaires de mécanique des milieux continus par la méthode des éléments finis: Grandes déformations des métaux et des sols, contact unilatéral de solides, conduction thermique et écoulements en milieu poreux.” Ph.D. thesis, Université de Liège, Liège, Belgium (in French).
Cheng, C., Dasari, G., Chow, Y., and Leung, C. (2007). “Finite element analysis of tunnel-soil–pile interaction using displacement controlled model.” Tunnelling Underground Space Technol., 22(4), 450–466.
Collin, F. (2003). “Couplages thermo-hydro-mécaniques dans les sols et les roches tendres partiellement saturés.” Ph.D. thesis, Université de Liège, Liège, Belgium (in French).
Comodromos, E. M., Anagnostopoulos, C. T., and Georgiadis, M. K. (2003). “Numerical assessment of axial pile group response based on load test.” Comput. Geotech., 30(6), 505–515.
Coulomb, C. (1773). “Essai sur une application des règles de maximis et minimis a quelques problémes de statique, relatifs a l’architecture.” Mémoires de Mathématique de l’Académie Royale des Sciences, Paris (in French).
D’Aguiar, S. C., Modaressi-Farahmand-Razavi, A., Dos Santos, J. A., and Lopez-Caballero, F. (2011). “Elastoplastic constitutive modelling of soil-structure interfaces under monotonic and cyclic loading.” Comput. Geotech., 38(4), 430–447.
Danno, K., and Kimura, M. (2009). “Evaluation of long-term displacements of pile foundation using coupled FEM and centrifuge model test.” Soils Found., 49(6), 941–958.
De Gennaro, V., and Frank, R. (2005). “Finite element modelling of the soil-pile interaction.” Bulletin des Laboratoires des Ponts et Chaussées, 256–257, 107–133.
De Gennaro, V., Frank, R., and Said, I. (2008). “Finite element analysis of model piles axially loaded in sands.” Ital. Geotech. J., 2(1), 44–62.
Demars, K. R., and Charles, R. D. (1981). “Soil volume changes induced by temperature cycling.” Can. Geotech. J., 19(2), 188–194.
Desai, C., Zaman, M., Lightner, J., and Siriwardane, H. (1984). “Thin-layer element for interfaces and joints.” Int. J. Numer. Anal. Methods Geomech., 8(1), 19–43.
Di Donna, A. (2014). “Thermo-mechanical aspects of energy piles.” Ph.D. thesis, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
Di Donna, A., and Laloui, L. (2014). “Numerical analysis of the geotechnical behaviour of energy piles.” Int. J. Numer. Anal. Methods Geomech., 39(8), 861–888.
Dixon, D., Gray, M., Lingnanu, B., Graham, G., and Campbell, S. (1993). “Thermal expansion testing to determine the influence of pore water structure on water flow through dense clays.” Proc., 46th Canadian Geotechnical Conf., Canadian Geotechnical Society, Richmond, Canada, 177–184.
Foray, P., Balachowski, L., and Rault, G. (1998). “Scale effects in shaft friction due to the localization of deformations.” Proc., Int. Conf. on Centrifuge, Taylor and Francis, London, 211–216.
GiD version 10.0.9 [Computer software]. Barcelona, Spain, International Center for Numerical Methods in Engineering.
Goode, J. C., III, Zhang, M., and McCartney, J. S. (2014). “Centrifuge modeling of energy foundations in sand.” Proc., 8th Int. Conf. on Physical Modelling in Geotechnics (ICPMG2014), Taylor and Francis, London, 729–736.
Goodman, R. E., Taylor, R. L., and Brekke, T. L. (1968). “A model for the mechanics of jointed rock.” J. Soil Mech. Found. Div., 94(SM3), 637–659.
Hueckel, T., and Baldi, G. (1990). “Thermoplasticity of saturated clays—Experimental constitutive study.” J. Geotech. Eng., 1778–1796.
Hueckel, T., and Pellegrini, R. (1992). “Effective stress and water pressure in saturated clays during heating-cooling cycles.” Can. Geotech. J., 29(6), 1095–1102.
Jaky, J. (1944). “The coefficient of earth pressure at rest.” J. Soc. Hungarian Architects Eng., 78(22), 355–358.
Jardine, R. J., Lehane, B. M., and Everton, S. J. (1992). “Friction coefficients for piles in sands and silts.” Proc., Int. Conf. on Offshore Site Investigations and Foundation Behaviour, D. A. Ardus, ed., Kluwer Academic Publishers, London, 661–677.
Katona, M. G. (1983). “A simple contact-friction interface element with applications to buried culverts.” Int. J. Numer. Anal. Methods Geomech., 7(3), 371–384.
Kishida, H., and Uesugi, M. (1987). “Tests of the interface between sand and steel in the simple shear apparatus.” Géotechnique, 37(1), 45–52.
Ko, H-Y. (1988). “Summary of the state-of-the-art in centrifuge model testing.” Centrifuges in soil mechanics, W. H. Craig, R. G. James, and A. N. Schofield, eds., Balkema, Rotterdam, Netherlands, 11–18.
Kraft, L. (1990). “Computing axial pile capacity in sands for offshore conditions.” Mar. Geotechnol., 9(1), 61–92.
Krishnaiah, S., and Singh, D. (2004). “Centrifuge modelling of heat migration in soils.” Int. J. Phys. Modell. Geotech., 4(3), 39–47.
Laloui, L., and Di Donna, A. (2011). “Understanding the behaviour of energy geo-structures.” Inst. Civ. Eng. Civ. Eng., 164(4), 184–191.
Laloui, L., Moreni, M., and Vulliet, L. (2003). “Comportement d’un pieu bi-fonction, fondation et échangeur de chaleur.” (in French) Can. Geotech. J., 40(2), 388–402.
Laloui, L., Nuth, M., and Vulliet, L. (2006). “Experimental and numerical investigations of the behaviour of a heat exchanger pile.” Int. J. Numer. Anal. Methods Geomech., 30(8), 763–781.
Lambe, T. (1973). “Predictions in soil engineering.” Géotechnique, 23(2), 151–202.
Leung, Y., Soga, K., Lehane, B., and Klar, A. (2010). “Role of linear elasticity in pile group analysis and load test interpretation.” J. Geotech. Geoenviron. Eng., 1686–1694.
Loveridge, F., Amis, T., and Powrie, W. (2012). “Energy pile performance and preventing ground freezing.” Proc., Int. Conf. on Geomechanics and Engineering, Woodhead Publishing, Seoul.
Mabsout, M. E., Reese, L. C., and Tassoulas, J. L. (1995). “Study of pile driving by finite-element method.” J. Geotech. Geoenviron. Eng., 535–543.
MATLAB version R2011a [Computer software]. Natick, MA, MathWorks.
Maqtadir, A., and Desai, C. S. (1986). “Three-dimensional analysis of a pile-group foundation.” Int. J. Numer. Anal. Methods Geomech., 10(1), 41–58.
McCartney, J. S. (2013). “Centrifuge modeling of energy foundations.” Energy geostructures: Innovation in underground engineering, L. Laloui and A. Di Donna, eds., Wiley-ISTE, London, 99–115.
McCartney, J. S., and Rosenberg, J. E. (2011). “Impact of heat exchange on side shear in thermoactive foundations.” Proc., Geo-Frontiers 2011 (GSP 211), J. Han and D. E. Alzamora, eds., ASCE, Reston, VA, 488–498.
McCartney, J. S., Rosenberg, J. E., and Sultanova, A. (2010). “Engineering performance of thermo-active foundation systems.” Proc., GeoTrends: The Progress of Geological and Geotechnical Engineering in Colorado at the Cusp of a New Decade (GPP 6), C. M. Goss, J. B. Kerrigan, J. Malamo, M. O. McCarron, and R. L. Wiltshire, eds., ASCE, Reston, VA, 27–42.
Meschyan, S. R., and Galstyan, R. R. (1972). “Investigation of compressional creep of clay soil with consideration of temperature effects.” Soil Mech. Found. Eng., 9(4), 227–231.
Mimouni, T., and Laloui, L. (2014). “Towards a secure basis for the design of geothermal piles.” Acta Geotechnica, 9(3), 355–366.
Mitchell, J. K., and Campanella, R. G. (1963). “Creep studies on saturated clays.” ASTM-NRC Symp. on Laboratory Soil Testing of Soils, Special Technical Publication, ASTM, West Conshohocken, PA, 163.
Mitchell, J. K., and Soga, K. (2005). Fundamentals of soil behavior, Wiley, New York.
Mohamedzein, Y. E., Mohamed, M. G., and El Sharief, A. M. (1999). “Finite element analysis of short piles in expansive soils.” Comput. Geotech., 24(3), 231–243.
Ng, C. W. W., Shi, C., Gunawan, A., Laloui, L., and Liu, H. L. (2015). “Centrifuge modelling of heating effects on energy pile performance in saturated sand.” Can. Geotech. J., 52, 1–13.
Nunez, I., Phillips, R., and Randolph, M. F. (1988). “Modelling laterally loaded piles in calcareous sand.” Proc., Int. Conf. Centrifuge 88, Taylor and Francis, London, 353–362.
Plum, R. L., and Esrig, M. I. (1969). “Some temperature effects on soil compressibility and pore water pressure.”.
Potts, D. M., and Zdravkovic, L. (2001a). Finite element analysis in geotechnical engineering: Application, Thomas Telford, London.
Potts, D. M., and Zdravkovic, L. (2001b). Finite element analysis in geotechnical engineering: Theory, Thomas Telford, London.
Prager, W. (1949). “Recent developments in the mathematical theory of plasticity.” J. Appl. Phys., 20(3), 235–241.
Randolph, M., Dolwin, R., and Beck, R. (1994). “Design of driven piles in sand.” Géotechnique, 44(3), 427–448.
Rotta Loria, A. F., Gunawan, A., Shi, C., Laloui, L., and Ng, C. W. (2015). “Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads.” Geomech. Energy Environ., 1(1), 1–15.
Saggu, R., and Chakraborty, T. (2015). “Thermal analysis of energy piles in sand.” Geomech. Geoeng., 10(1), 10–29.
Said, I., De Gennaro, V., and Frank, R. (2009). “Axisymmetric finite element analysis of pile loading tests.” Comput. Geotech., 36(1), 6–19.
Schofield, A. N. (1980). “Cambridge geotechnical centrifuge operations.” Géotechnique, 30(3), 227–268.
Sheng, D., Wriggers, P., and Sloan, S. W. (2007). “Application of frictional contact in geotechnical engineering.” Int. J. Geomech., 176–185.
Stewart, D. P., Jewell, R. J., and Randolph, M. (1993). “Numerical modelling of piled bridge abutments on soft ground.” Comput. Geotech., 15(1), 21–46.
Stewart, M. A., and McCartney, J. S. (2012). “Strain distributions in centrifuge model energy foundations.” Proc., GeoCongress 2012 (GSP 225), R. D. Hryciw, A. Athanasopoulos-Zekkos, and N. Yesiller, eds., ASCE, Reston, VA, 4376–4385.
Stewart, M. A., and McCartney, J. S. (2014). “Centrifuge modeling of soil-structure interaction in energy foundations.” J. Geotech. Geoenviron. Eng., 04013044.
Suryatriyastuti, M., Mroueh, H., and Burlon, S. (2012). “Understanding the temperature-induced mechanical behaviour of energy pile foundations.” Renewable Sustainable Energy Rev., 16(5), 3344–3354.
Taylor, R. N. (1995). Geotechnical centrifuge technology, Blakie, London.
Timoshenko, S., and Goodier, J. N. (1951). Theory of elasticity, McGraw-Hill, New York.
Trochanis, A. M., Bielak, J., and Christiano, P. (1991). “Three-dimensional nonlinear study of piles.” J. Geotech. Eng., 429–447.
Wakai, A., Gose, S., and Ugai, K. (1999). “3-D elasto-plastic finite element analyses of pile foundations subjected to lateral loading.” Soils Found., 39(1), 97–111.
Wang, W., Regueiro, R., Stewart, M. A., and McCartney, J. S. (2012). “Coupled thermo-poro-mechanical finite element analysis of a heated single pile centrifuge experiment in saturated silt.” Proc., GeoCongress 2012 (GSP 225), R. D. Hryciw, A. Athanasopoulos-Zekkos, and N. Yesiller, eds., ASCE, Reston, VA, 4406–4415.
Wehnert, M., and Vermeer, P. (2004). “Numerical analyses of load tests on bored piles.” Numerical methods in geomechanics–NUMOG IX, 505–511.
Wesselink, B., Murff, J., Randolph, M., Nunez, I., and Hyden, A. (1988). “Analysis of centrifuge model test data from laterally loaded piles in calcareous sand.” Proc., Int. Conf. for Calcareous Sediments, Vol. 1, Balkema, 261–270.
Yang, Z., and Jeremić, B. (2002). “Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils.” Int. J. Numer. Anal. Methods Geomech., 26(14), 1385–1406.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 141Issue 10October 2015

History

Received: Aug 7, 2014
Accepted: Feb 19, 2015
Published online: May 22, 2015
Published in print: Oct 1, 2015
Discussion open until: Oct 22, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

Alessandro F. Rotta Loria [email protected]
Ph.D. Candidate, Swiss Federal Institute of Technology, EPFL, Laboratory of Soil Mechanics, LMS, Station 18, CH 1015 Lausanne, Switzerland (corresponding author). E-mail: [email protected]
Alice Di Donna, Ph.D. [email protected]
P.E.
Research Assistant, Swiss Federal Institute of Technology, EPFL, Laboratory of Soil Mechanics, LMS, Station 18, CH 1015 Lausanne, Switzerland. E-mail: [email protected]
Lyesse Laloui, Ph.D. [email protected]
P.E.
Professor, Swiss Federal Institute of Technology, EPFL, Laboratory of Soil Mechanics, LMS, Station 18, CH 1015 Lausanne, Switzerland. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share