Technical Papers
Aug 21, 2014

Strength and Deformation of Rockfill Material Based on Large-Scale Triaxial Compression Tests. II: Influence of Particle Breakage

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 140, Issue 12

Abstract

The amount of particle breakage of Tacheng rockfill material (TRM) in the process of shearing was quantitatively measured by a relative breakage index. The fractal dimension of TRM at the final state of the tests was found to be linearly related to the void ratio and logarithm of the confining pressure. The influences of the relative breakage index on the friction angle, modulus, and deformation were investigated based on a series of large-scale triaxial compression tests on TRM. An increase in the relative breakage index leads to an increase in the volumetric strain and to decreases in the peak state friction angle, critical state friction angle, deviatoric strain, and critical state void ratio. The test results were used to propose simple formulations pertaining to the relative breakage index for the strength and deformation indexes (e.g., peak state friction angle, critical state friction angle, initial elastic modulus, secant modulus at 50% of the peak strength, volumetric strain, deviatoric strain, and critical state void ratio).

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank the 111 Project (Grant No. B13024), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1125), the National Natural Science Foundation of China (Grant No. 51379067), and Fundamental Research Funds for the Central Universities (Grant No. 2011B14514) for the financial support. The authors also thank Dr. W. G. Zhang and Dr. J. He, School of Civil and Environmental Engineering, Nanyang Technological University, for improving the language used in this paper.

References

Abbas, S. M. (2011). Constitutive modeling of rockfill materials, Lambert Academic Publishing, Saarbrücken, Germany.
Anderson, W. F., and Fair, P. (2008). “Behavior of railroad ballast under monotonic and cyclic loading.” J. Geotech. Geoenviron. Eng., 316–327.
Araei, A. A., Razeghi, H. R., Ghalandarzadeh, A., and Tabatabaei, S. H. (2012). “Effects of loading rate and initial stress state on stress–strain behavior of rock fill materials under monotonic and cyclic loading conditions.” Scientia Iranica, 19(5), 1220–1235.
Barton, N., and Kjaernsli, B. (1981). “Shear strength of rockfill.” J. Geotech. Engrg. Div., 107(7), 873–891.
Been, K., and Jefferies, M. G. (1985). “A state parameter for sands.” Géotechnique, 35(2), 99–112.
Charles, J. A., and Watts, K. S. (1980). “The influence of confining pressure on the shear strength of compacted rockfill.” Géotechnique, 30(4), 353–367.
Cheng, Y. P., Bolton, M. D., and Nakata, Y. (2004). “Crushing and plastic deformation of soils simulated using DEM.” Géotechnique, 54(2), 131–141.
Cheng, Y. P., Nakata, Y., and Bolton, M. D. (2003). “Discrete element simulation of crushable soil.” Géotechnique, 53(7), 633–641.
Chu, B.-L., Jou, Y.-W., and Weng, M.-C. (2010). “A constitutive model for gravelly soils considering shear-induced volumetric deformation.” Can. Geotech. J., 47(6), 662–673.
Daouadji, A., and Hicher, P.-Y. (2010). “An enhanced constitutive model for crushable granular materials.” Int. J. Numer. Anal. Met., 34(6), 555–580.
Desai, C. S. (2001). Mechanics of materials and interfaces: The disturbed state concept, CRC Press, Boca Raton, FL.
Desai, C. S., and El-Hoseiny, K. E. (2005). “Prediction of field behavior of reinforced soil wall using advanced constitutive model.” J. Geotech. Geoenviron. Eng., 729–739.
Desai, C. S., and Faruque, Md. O. (1984). “Constitutive model for (geological) materials.” J. Eng. Mech., 1391–1408.
Desai, C. S., Jagannath, S. V., and Kundu, T. (1995). “Mechanical and ultrasonic anisotropic response of soil.” J. Eng. Mech., 744–752.
Desai, C. S., Janardahanam, R., and Sture, S. (1982). “High capacity multiaxial testing device.” ASTM Geotech. Test. J., 5(1/2), 26–33.
Desai, C. S., and Salami, M. R. (1987). “Constitutive model for rocks.” J. Geotech. Engrg., 407–423.
Desai, C. S., and Siriwardane, H. J. (1983). Constitutive laws for engineering materials, Prentice Hall, Englewood Cliffs, NJ.
Desai, C. S., and Toth, J. (1996). “Disturbed state constitutive modeling based on stress-strain and nondestructive behavior.” Int. J. Solids Struct., 33(11), 1619–1650.
Einav, I. (2007a). “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids, 55(6), 1274–1297.
Einav, I. (2007b). “Soil mechanics: Breaking ground.” Philos. Trans. R. Soc. London, Ser. A, 365(1861), 2985–3002.
Gajo, A., and Muir Wood, D. (1999). “Severn–Trent sand: A kinematic-hardening constitutive model: The q–p formulation.” Géotechnique, 49(5), 595–614.
Gudehus, G. (1996). “A comprehensive constitutive equation for granular materials.” Soils Found., 36(1), 1–12.
Gupta, A. K. (2000). “Constitutive modeling of rockfill materials.” Ph.D. thesis, Indian Institute of Technology, Delhi, India.
Gupta, A. K. (2009a). “Effect of particle size and confining pressure on breakage and strength parameters of rockfill materials.” Electron. J. Geotech. Eng., 14(Bund. H), 1–12.
Gupta, A. K. (2009b). “Triaxial behaviour of rockfill materials.” Electron. J. Geotech. Eng., 14(Bund. J), 1–18.
Hardin, B. O. (1985). “Crushing of soil particles.” J. Geotech. Engrg., 1177–1192.
Honkanadavar, N. P. (2010). Testing and modeling the behaviour of modeled and prototype rockfill materials, Indian Institute of Technology, Delhi, India.
Honkanadavar, N. P., and Gupta, S. L. (2010). “Prediction of shear strength parameters for prototype riverbed rockfill material using index properties.” Indian Geotechnical Conf.—2010, Indian Geotechnical Society, New Delhi, India, 335–338.
Honkanadavar, N. P., Gupta, S. L., and Bajaj, S. (2011). “Deformability characteristics of quarried rockfill material.” Int. J. Earth Sci. Eng., 4(6), 128–131.
Honkanadavar, N. P., Gupta, S. L., and Ratnam, M. (2012). “Effect of particle size and confining pressure on shear strength parameter of rockfill materials.” Int. J. Adv. Civil Eng. Archit., 1(1), 49–63.
Indraratna, B., Ionescu, D., and Christie, H. D. (1998). “Shear behavior of railway ballast based on large-scale triaxial tests.” J. Geotech. Geoenviron. Eng., 439–449.
Indraratna, B., Wijewardena, L. S. S., and Balasubramaniam, A. S. (1993). “Large-scale triaxial testing of grey wacke rockfill.” Géotechnique, 43(1), 37–51.
Janardhanam, R., and Desai, C. S. (1983). “Three-dimensional testing and modeling of ballast.” J. Geotech. Engrg., 783–796.
Lackenby, J., Indraratna, B., McDowell, G., and Christie, D. (2007). “Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading.” Géotechnique, 57(6), 527–536.
Lade, P. V., Yamamuro, J. A., and Bopp, P. A. (1996). “Significance of particle crushing in granular materials.” J. Geotech. Engrg., 309–316.
Lashkari, A. (2009). “On the modeling of the state dependency of granular soils.” Comput. Geotech., 36(7), 1237–1245.
Lashkari, A., and Golchin, A. (2014). “On the influence of elastic–plastic coupling on sands response.” Comput. Geotech., 55(Jan), 352–364.
Lee, K. L., and Farhoomand, I. (1967). “Compressibility and crushing of granular soil in anisotropic triaxial compression.” Can. Geotech. J., 4(1), 68–86.
Leps, T. M. (1970). “Review of shearing strength of rockfill.” J. Soil Mech. and Found. Div., 96(4), 1159–1170.
Li, X. S. (1997). “Modeling of dilative shear failure.” J. Geotech. Geoenviron. Eng., 609–616.
Li, X. S., and Dafalias, Y. F. (2000). “Dilatancy for cohesionless soils.” Géotechnique, 50(4), 449–460.
Li, X. S., and Dafalias, Y. F. (2002). “Constitutive modeling of inherently anisotropic sand behavior.” J. Geotech. Geoenviron. Eng., 868–880.
Li, X. S., and Wang, Y. (1998). “Linear representation of steady-state line for sand.” J. Geotech. Geoenviron. Eng., 1215–1217.
Lobo-Guerrero, S., and Vallejo, L. E. (2005). “Analysis of crushing of granular material under isotropic and biaxial stress conditions.” Soils Found., 45(4), 79–87.
Lobo-Guerrero, S., and Vallejo, L. E. (2006a). “Discrete element method analysis of railtrack ballast degradation during cyclic loading.” Granul. Matter, 8(3–4), 195–204.
Lobo-Guerrero, S., and Vallejo, L. E. (2006b). “Modeling granular crushing in ring shear tests: Experimental and numerical analyses.” Soils Found., 46(2), 147–157.
Lobo-Guerrero, S., Vallejo, L. E., and Vesga, L. F. (2006). “Visualization of crushing evolution in granular materials under compression using DEM.” Int. J. Geomech., 195–200.
Loukidis, D., and Salgado, R. (2009). “Modeling sand response using two-surface plasticity.” Comput. Geotech., 36(1–2), 166–186.
Marsal, R. J. (1967). “Large-scale testing of rockfill materials.” J. Soil Mech. and Found. Div., 93(2), 27–43.
Marschi, N. D., Chan, C. K., and Seed, H. B. (1972). “Evaluation of properties of rockfill materials.” J. Soil Mech. and Found. Div., 98(1), 95–114.
McDowell, G. R., and Bolton, M. D. (1998). “On the micromechanics of crushable aggregates.” Géotechnique, 48(5), 667–679.
McDowell, G. R., Bolton, M. D., and Robertson, D. (1996). “The fractal crushing of granular materials.” J. Mech. Phys. Solids, 44(12), 2079–2101.
Miura, N., and O-Hara, S. (1979). “Particle-crushing of a decomposed granite soil under shear stresses.” Soils Found., 19(3), 1–14.
Miura, N., and Yamamoto, T. (1976). “Particle-crushing properties of sands under high stresses.” Techn. Rep. Yamaguchi Univ., 1(4), 439–447.
Miura, S., Yagi, K., and Asonuma, T. (2003). “Deformation-strength evaluation of crushable volcanic soils by laboratory and in-situ testing.” Soils Found., 43(4), 47–57.
Muir Wood, D., and Maeda, K. (2008). “Changing grading of soil: Effect on critical states.” Acta Geotech., 3(1), 3–14.
Russell, A. R., and Khalili, N. (2004). “A bounding surface plasticity model for sands exhibiting particle crushing.” Can. Geotech. J., 41(6), 1179–1192.
Salim, W., and Indraratna, B. (2004). “A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage.” Can. Geotech. J., 41(4), 657–671.
Seif El Dine, B., Dupla, J. C., Frank, R., Canou, J., and Kazan, Y. (2010). “Mechanical characterization of matrix coarse-grained soils with a large-sized triaxial device.” Can. Geotech. J., 47(4), 425–438.
Sevi, A., and Ge, L. (2012). “Cyclic behaviors of railroad ballast within the parallel gradation scaling framework.” J. Mater. Civ. Eng., 797–804.
Shi, W. C. (2008). “True triaxial tests on coarse-grained soils and study on constitutive model.” Ph.D. thesis, Hohai Univ., Nanjing, China.
Varadarajan, A., Sharma, K. G., Abbas, S. M., and Dhawan, A. K. (2006). “Constitutive model for rockfill materials and determination of material constants.” Int. J. Geomech., 226–237.
Varadarajan, A., Sharma, K. G., Venkatachalam, K., and Abbas, S. M. (2002). “Constitutive modeling of rockfill materials from Tehri Dam, Uttaranchal.” Proc., IGC2002, Indian Geotechnical Society, New Delhi, India, 592–595.
Varadarajan, A., Sharma, K. G., Venkatachalam, K., and Gupta, A. K. (1997). “Constitutive modeling of a rockfill material using HISS model.” Proc., Indian Geotechnical Conf.—1997, Indian Geotechnical Society, New Delhi, India, 153–156.
Varadarajan, A., Sharma, K. G., Venkatachalam, K., and Gupta, A. K. (1999). “Constitutive modelling of a rockfill materials.” Proc., 4th Int. Conf. on Constitutive Laws for Engineering Materials, Rensselaer Polytechnic Institute, Troy, NY.
Varadarajan, A., Sharma, K. G., Venkatachalam, K., and Gupta, A. K. (2003). “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng., 206–218.
Vasistha, Y., Gupta, A. K., and Kanwar, V. (2012). “Prediction of shear strength parameters of two rockfill materials.” Electron. J. Geotech. Eng., 17, 3221–3232.
Vasistha, Y., Gupta, A. K., and Kanwar, V. (2013). “Medium triaxial testing of some rockfill materials.” Electron. J. Geotech. Eng, 18(Bund. D), 923–964.
Wan, R. G., and Guo, P. J. (1999). “A pressure and density dependent dilatancy model for granular materials.” Soils Found., 39(6), 1–11.
Wang, J., and Yan, H. (2012). “DEM analysis of energy dissipation in crushable soils.” Soils Found., 52(4), 644–657.
Wang, Z.-L., Dafalias, Y. F., Li, X.-S., and Makdisi, F. I. (2002). “State pressure index for modeling sand behavior.” J. Geotech. Geoenviron. Eng., 511–519.
Xiao, Y., Liu, H., Chen, Y., and Jiang, J. (2014a). “Bounding surface plasticity model incorporating the state pressure index for rockfill materials.” J. Eng. Mech., 04014087.
Xiao, Y., Liu, H., Chen, Y., and Jiang, J. (2014b). “Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: Influences of density and pressure.” J. Geotech. Geoenviron. Eng., 04014070.
Xiao, Y., Liu, H., Chen, Y., Jiang, J., and Zhang, W. (2014c). “Testing and modeling of the state-dependent behaviors of rockfill material.” Comput. Geotech., 61(Sep), 153–165.
Xiao, Y., Liu, H. L., Zhu, J. G., and Shi, W. C. (2011a). “Dilatancy equation of rockfill material under the true triaxial stress condition.” Sci. Chin. Tech. Sci., 54(S1), 175–184.
Xiao, Y., Liu, H. L., Zhu, J. G., and Shi, W. C. (2012). “Modeling and behaviours of rockfill materials in three-dimensional stress space.” Sci. Chin. Tech. Sci., 55(10), 2877–2892.
Xiao, Y., Liu, H. L., Zhu, J. G., Shi, W. C., and Liu, M. C. (2011b). “A 3D bounding surface model for rockfill materials.” Sci. Chin. Tech. Sci., 54(11), 2904–2915.
Xu, M., Song, E., and Chen, J. (2012). “A large triaxial investigation of the stress-path-dependent behavior of compacted rockfill.” Acta Geotech., 7(3), 167–175.
Yang, J., and Li, X. S. (2004). “State-dependent strength of sands from the perspective of unified modeling.” J. Geotech. Geoenviron. Eng., 186–198.
Yang, Z.-Y., and Juo, J.-L. (2001). “Interpretation of sieve analysis data using the box-counting method for gravelly cobbles.” Can. Geotech. J., 38(6), 1201–1212.
Yao, Y. P., Sun, D. A., and Luo, T. (2004). “A critical state model for sands dependent on stress and density.” Int. J. Numer. Anal. Met., 28(4), 323–337.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 140Issue 12December 2014

History

Received: Oct 19, 2013
Accepted: Jul 15, 2014
Published online: Aug 21, 2014
Published in print: Dec 1, 2014
Discussion open until: Jan 21, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, S.M.ASCE [email protected]
Associate Professor, College of Civil Engineering, Chongqing Univ., Chongqing 400450, China; Researcher, College of Civil and Transportation Engineering, Hohai Univ., Nanjing 210098, China. E-mail: [email protected]
Hanlong Liu [email protected]
Professor and Chair, College of Civil Engineering, Chongqing Univ., Chongqing 400450, China. E-mail: [email protected]
Associate Professor, College of Civil and Transportation Engineering, Hohai Univ., Nanjing 210098, China (corresponding author). E-mail: [email protected]
Jingshan Jiang [email protected]
Lecturer, School of Civil Engineering, Nanjing Institute of Technology, Nanjing 211167, China. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share