Technical Papers
Apr 28, 2014

Interface Shear Damage to a HDPE Geomembrane. I: Gravelly Compacted Clay Liner

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 140, Issue 8

Abstract

An experimental program of large-scale direct shear tests has indicated that shear displacement of a high-density polyethylene (HDPE) geomembrane (GM) over a gravelly compacted clay liner (CCL) under moderate to high normal stress conditions can cause much greater damage to the geomembrane than static pressure alone. Essentially, no damage was observed at low normal stress. The greatest geomembrane damage occurred at high normal stress (1,658 kPa) and yielded an average of 169holes/m2, with a maximum hole size of 23 mm. Size, angularity, and hardness of the gravel particles are also important factors with regard to potential damage. Geomembrane damage was greatly reduced when a needle-punched geosynthetic clay liner (GCL) was placed between the geomembrane and gravelly CCL, including one test conducted at very high normal stress (4,145 kPa). The findings suggest that gravelly soils should be viewed with caution for the construction of GM/CCL composite liners for landfill bottom liner systems and other moderate- to high-stress applications. If there is a reasonable expectation for GM/CCL interface shear displacement, project-specific direct shear tests should be conducted to determine the potential for shear-induced geomembrane damage. Recommendations are provided for the performance of such tests and for design options when damage mitigation is necessary.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Financial support for this investigation was provided by Grant No. CMMI-0800030 from the Geotechnical Engineering Program of the U.S. National Science Foundation and by a grant from CETCO of Hoffman Estates, Illinois. Geomembrane materials were provided by GSE, and GCL materials were provided by CETCO. Clay soil was obtained through the assistance of Dr. Neven Matasovic of Geosyntec Consultants, Huntington Beach, California. This support and assistance is gratefully acknowledged. The authors also thank Dr. Craig H. Benson, Wisconsin Distinguished Professor and Chair of the Department of Civil and Environmental Engineering at the University of Wisconsin-Madison, for helpful information with regard to typical gradation requirements for compacted clay liners, and both Neven and Craig for their views on the limitations of current direct shear testing practice for geomembranes over gravelly CCLs.

References

Allen, S., and Narejo, D. (2010). “Point strains in HDPE geomembranes with and without GCL protection layers.” Proc., 3rd Int. Symp. on Geosynthetic Clay Liners, H. Zanzinger, J. Zornberg, and N. Touze-Foltz, eds., SKZ, Würzburg, Germany.
Amaya, P., Queen, B., Stark, T. D., and Choi, H. (2006). “Case history of liner veneer instability.” Geosynthetics Int., 13(1), 36–46.
Athanassopoulos, C., Fox, P. J., Thielmann, S. S., and Stern, A. N. (2012). “Shear-induced geomembrane damage due to gravel in the underlying compacted clay liner.” Proc., 2nd Pan American Geosynthetics Conf., Int. Geosynthetics Society, San Isidro, Peru, 502–509.
Athanassopoulos, C., Kohlman, A., Henderson, M., and Kaul, J. (2009). “Evaluation of geomembrane puncture potential and hydraulic performance in mining applications.” Proc., Tailings and Mine Waste ’08, Taylor & Francis, London, 189–198.
Augello, A. J., Matasovic, N., Bray, J. D., Kavazanjian, E., Jr., and Seed, R. B. (1995). “Evaluation of solid waste landfill performance during the Northridge earthquake.” Proc., Earthquake Design and Performance of Solid Waste Landfills, M. K. Yegian and W. D. L. Finn, eds., ASCE, Reston, VA, 17–50.
Benson, C. H. (2002). “Containment systems: Lessons learned from North American failures.” Proc., 4th Int. Congress on Environmental Geotechnics, Vol. 2, Balkema, Lisse, Netherlands, 1095–1112.
Benson, C. H., Zhai, H., and Wang, X. (1994). “Estimating hydraulic conductivity of compacted clay liners.” J. Geotech. Engrg., 366–387.
Bonaparte, R., Daniel, D. E., and Koerner, R. M. (2002). “Assessment and recommendations for improving the performance of waste containment systems.” EPA/600/R-02/099, EPA, Washington, DC.
Brachman, R. W. I., and Gudina, S. (2008a). “Geomembrane strains from coarse gravel and wrinkles in a GM/GCL composite liner.” Geotext. Geomembr., 26(6), 488–497.
Brachman, R. W. I., and Gudina, S. (2008b). “Gravel contacts and geomembrane strains for a GM/GCL composite liner.” Geotext. Geomembr., 26(6), 448–459.
Brachman, R. W. I., and Sabir, A. (2010). “Geomembrane puncture and strains from stones in an underlying clay layer.” Geotext. Geomembr., 28(4), 335–343.
Brachman, R. W. I., and Sabir, A. (2013). “Long-term assessment of a layered-geotextile protection layer for geomembranes.” J. Geotech. Geoenviron. Eng., 752–764.
Breitenbach, A. J., and Swan, R. H., Jr. (1999). “Influence of high load deformations on geomembrane liner interface strengths.” Proc., Geosynthetics ‘99, Vol. 1, Industrial Fabrics Association Int., Roseville, MN, 517–529.
Brummermann, K., Blumel, W., and Stoehwahse, C. (1994). “Protection layers for geomembranes: Effectiveness and testing procedures.” Proc., 5th Int. Conf. on Geotextiles, Geomembranes and Related Products, Vol. 3, Southeast Asia Chapter, Int. Geotextile Society, Singapore, 1003–1006.
Christie, M. A., and Smith, M. E. (2013). “A brief history of heap leaching.” Proc., GRI-25, Industrial Fabrics Association Int., Roseville, MN, 265–287.
Daniel, D. E., and Koerner, R. M. (2007). Waste containment facilities: Guidance for construction quality assurance and construction quality control of liner and cover systems, 2nd Ed., ASCE, Reston, VA.
DeJong, J. T., and Westgate, Z. J. (2005). “Role of overconsolidation on sand-geomembrane interface response and material damage evolution.” Geotext. Geomembr., 23(6), 486–512.
Dickinson, S., and Brachman, R. W. I. (2008). “Assessment of alternative protection layers for a geomembrane–geosynthetic clay liner (GM–GCL) composite liner.” Can. Geotech. J., 45(11), 1594–1610.
Dixon, N., Zamara, K., Jones, D. R. V., and Fowmes, G. (2012). “Waste/lining system interaction: Implications for landfill design and performance.” Geotech. Eng. J. SEAGS AGSSEA, 43(3), 1–10.
Dove, J. E., and Frost, J. D. (1999). “Peak friction behavior of smooth geomembrane-particle interfaces.” J. Geotech. Geoenviron. Eng., 544–555.
Edil, T. B., Ranguette, V. J., and Wuellner, W. W. (1990). “Settlement of municipal refuse.” Geotechnics of waste fill—Theory and practice, STP1070, A. O. Landva and G. D. Knowles, eds., ASTM, West Conshohocken, PA, 225–239.
Filz, G. M., Esterhuizen, J. J. B., and Duncan, J. M. (2001). “Progressive failure of lined waste impoundments.” J. Geotech. Geoenviron. Eng., 841–848.
Fleming, I. R., Sharma, J. S., and Jogi, M. B. (2006). “Shear strength of geomembrane-soil interface under unsaturated conditions.” Geotext. Geomembr., 24(5), 274–284.
Fox, P. J., Athanassopoulos, C., Thielmann, S. S., and Stern, A. N. (2012). “Shear-induced geomembrane damage due to gravel in underlying compacted clay.” Geotech. Eng. J. SEAGS AGSSEA, 43(3), 30–34.
Fox, P. J., De Battista, D. J., and Mast, D. G. (2000). “Hydraulic performance of geosynthetic clay liners under gravel cover soils.” Geotext. Geomembr., 18(2–4), 179–201.
Fox, P. J., and Kim, R. H. (2008). “Effect of progressive failure on measured shear strength of geomembrane/GCL interface.” J. Geotech. Geoenviron. Eng., 459–469.
Fox, P. J., Nye, C. J., Morrison, T. C., Hunter, J. G., and Olsta, J. T. (2006). “Large dynamic direct shear machine for geosynthetic clay liners.” J. ASTM Geotech. Test., 29(5), 392–400.
Fox, P. J., and Ross, J. D. (2011). “Relationship between NP GCL internal and HDPE GMX/NP GCL interface shear strengths.” J. Geotech. Geoenviron. Eng., 743–753.
Fox, P. J., Ross, J. D., Sura, J. M., and Thiel, R. S. (2011). “Geomembrane damage due to static and cyclic shearing over compacted gravelly sand.” Geosynthetics Int., 18(5), 272–279.
Fox, P. J., Rowland, M. G., and Scheithe, J. R. (1998). “Internal shear strength of three geosynthetic clay liners.” J. Geotech. Geoenviron. Eng., 933–944.
Fox, P. J., and Stark, T. D. (2004). “State-of-the-art report: GCL shear strength and its measurement.” Geosynthetics Int., 11(3), 141–175.
Fox, P. J., and Thielmann, S. S. (2014). “Interface shear damage to a HDPE geomembrane. II: Gravel drainage layer.” J. Geotech. Geoenviron. Eng., 04014040.
Frost, J. D., and Lee, S. W. (2001). “Microscale study of geomembrane-geotextile interactions.” Geosynthetics Int., 8(6), 577–597.
Gilbert, R. B., and Byrne, R. J. (1996). “Strain-softening behavior of waste containment interfaces.” Geosynthetics Int., 3(2), 181–203.
Giroud, J. P. (1973). “L’étancheité des retenues d’eau par feuilles déroulées.” Annales de l’ITBTP, 312, TP 161, 96–112 (in French).
Giroud, J. P. (1982). “Design of geotextiles associated with geomembranes.” Proc., 2nd Int. Conf. on Geotextiles, Vol. 1, Industrial Fabrics Association Int., Roseville, MN, 37–42.
Giroud, J. P. (2005). “Geosynthetics engineering: Successes, failures, and lessons learned.” Proc., 5th Österreichische Geotechniktagung, Osterreichischer Ingenieur und Architekten Verein, Vienna, Austria, 11–54.
Giroud, J. P., Badu-Tweneboah, K., and Soderman, K. L. (1995). “Theoretical analysis of geomembrane puncture.” Geosynthetics Int., 2(6), 1019–1048.
Giroud, J. P., and Touze-Foltz, N. (2003). “Geomembranes in landfills: Discussion at the 7th International Conference on Geosynthetics.” Geosynthetics Int., 10(4), 124–133.
Heerten, G. (1994). “Geotextile and/or GCL protection systems for geomembranes.” Geosynthetic liner systems: Innovations, concerns and designs, R. M. Koerner and R. F. Wilson-Fahmy, eds., Industrial Fabrics Association Int., Roseville, MN, 155–167.
Jones, D. R. V., and Dixon, N. (1998). “Shear strength properties of geomembrane/geotextile interfaces.” Geotext. Geomembr., 16(1), 45–71.
Jones, D. R. V., and Dixon, N. (2005). “Landfill lining stability and integrity: The role of waste settlement.” Geotext. Geomembr., 23(1), 27–53.
Koerner, R. M., Hsuan, Y. G., Koerner, G. R., and Gryger, D. (2010). “Ten year creep puncture study of HDPE geomembranes protected by needle-punched nonwoven geotextiles.” Geotext. Geomembr., 28(6), 503–513.
Koerner, R. M., and Soong, T.-Y. (2000). “Stability assessment of ten large landfill failures.” Proc., Geo-Denver 2000: Advances in Transportation and Geoenvironmental Systems Using Geosynthetics, J. G. Zornberg and B. R. Christopher, eds., ASCE, Reston, VA, 1–38.
Koerner, R. M., Wilson-Fahmy, R. F., and Narejo, D. (1996). “Puncture protection of geomembranes. Part III: Examples.” Geosynthetics Int., 3(5), 655–675.
Li, M.-H., and Gilbert, R. B. (2006). “Mechanism of post-peak strength reduction for textured geomembrane-nonwoven geotextile interfaces.” Geosynthetics Int., 13(5), 206–209.
Ling, H. I., Pamuk, A., Dechasakulsom, M., Mohri, Y., and Burke, C. (2001). “Interactions between PVC geomembranes and compacted clays.” J. Geotech. Geoenviron. Eng., 950–954.
Mitchell, J. K., Seed, R. B., and Seed, H. B. (1990). “Kettleman Hills waste landfill slope failure. I: Liner-system properties.” J. Geotech. Engrg., 647–668.
Motan, E. S., Reed, L. S., and Lundell, C. M. (1993). “Geomembrane protection by nonwoven geotextiles.” Proc., Geosynthetics ‘93, Vol. 2, Industrial Fabrics Association Int., Roseville, MN, 887–900.
Narejo, D., Corcoran, G., and Zunker, R. (2002). “An evaluation of geosynthetic clay liners to minimize geomembrane leakage caused by protrusions in subgrades and compacted clay liners.” Clay geosynthetic barriers, H. Zanzinger, R. M. Koerner, and E. Gartung, eds., Swets & Zeitlinger, Lisse, Netherlands, 61–69.
Narejo, D., Kavazanjian, E., and Erickson, R. (2007). “Maximum protrusion size under geomembrane/GCL composite liners.” Proc., Geosynthetics 2007 (CD-ROM), Industrial Fabrics Association Int., Roseville, MN.
Narejo, D., Koerner, R. M., and Wilson-Fahmy, R. F. (1996). “Puncture protection of geomembranes. Part II: Experimental.” Geosynthetics Int., 3(5), 629–653.
Nosko, V., and Touze-Foltz, N. (2000). “Geomembrane liner failure: Modeling of its influence on contaminant transfer.” Proc., 2nd European Conf. on Geosynthetics, A. Cancelli, D. Cazzuffi, and C. Soccodato, eds., Pàtron Editore, Bologna, Italy, 557–560.
Park, H. I., Lee, S. R., and Do, N. Y. (2002). “Evaluation of decomposition effect on long-term settlement prediction for fresh municipal solid waste landfills.” J. Geotech. Geoenviron. Eng., 107–118.
Peggs, I. D., Schmucker, B., and Carey, P. (2005). “Assessment of maximum allowable strains in polyethylene and polypropylene geomembranes.” Proc., GeoFrontiers 2005: Waste Containment and Remediation, A. Alshawabkeh et al., eds., ASCE, Reston, VA, 1–16.
Reddy, K. R., Bandi, S. R., Rohr, J. J., Finy, M., and Siebken, J. (1996a). “Field evaluation of protective covers for landfill geomembrane liners under construction loading.” Geosynthetics Int., 3(6), 679–700.
Reddy, K. R., Kosgi, S., and Motan, E. S. (1996b). “Interface shear behavior of landfill composite liner systems: A finite element analysis.” Geosynthetics Int., 3(2), 247–275.
Rowe, R. K., Quigley, R. M., Brachman, R. W. I., and Booker, J. R. (2004). Barrier systems for waste disposal facilities, 2nd Ed., Spon, London.
Seed, R. B., Mitchell, J. K., and Seed, H. B. (1990). “Kettleman Hills waste landfill slope failure. II: Stability analyses.” J. Geotech. Engrg., 669–690.
Shan, H. Y., and Daniel, D. E. (1991). “Results of laboratory tests on geotextile/bentonie liner material.” Proc., Geosynthetics '91, Vol. 2, Industrial Fabrics Association Int., Roseville, MN, 517–535.
Shelley, T. L., and Daniel, D. E. (1993). “Effect of gravel on hydraulic conductivity of compacted soil liners.” J. Geotech. Engrg., 54–68.
Sia, A. H. I., and Dixon, N. (2012). “Numerical modeling of landfill lining system—Waste interaction: Implications of parameter variability.” Geosynthetics Int., 19(5), 393–408.
Stark, T. D., Arellano, D., Evans, W. D., Wilson, V. L., and Gonda, J. M. (1998). “Unreinforced geosynthetic clay liner case history.” Geosynthetics Int., 5(5), 521–544.
Stark, T. D., Boerman, T. R., and Connor, C. J. (2008). “Puncture resistance of PVC geomembranes using the truncated cone test.” Geosynthetics Int., 15(6), 480–486.
Stark, T. D., and Poeppel, A. R. (1994). “Landfill liner interface strengths from torsional-ring-shear tests.” J. Geotech. Engrg., 597–615.
Thiel, R., and Smith, M. E. (2003). “State of the practice review of heap leach pad design issues.” Proc., 17th GRI Conf., Hot Topics in Geosynthetics-IV, Geosynthetics Institute, Folsom, PA.
Tognon, A. R., Rowe, R. K., and Moore, I. D. (2000). “Geomembrane strain observed in large-scale testing of protection layers.” J. Geotech. Geoenviron. Eng., 1194–1208.
Triplett, E. J., and Fox, P. J. (2001). “Shear strength of HDPE geomembrane/geosynthetic clay liner interfaces.” J. Geotech. Geoenviron. Eng., 543–552.
Vaid, Y. P., and Rinne, N. (1995). “Geomembrane coefficients of interface friction.” Geosynthetics Int., 2(1), 309–325.
Wilson-Fahmy, R. F., Narejo, D., and Koerner, R. M. (1996). “Puncture protection of geomembranes. Part I: Theory.” Geosynthetics Int., 3(5), 605–628.
Wong, C. L. Y., and Wijewickreme, D. (1993). “HDPE & VLDPE geomembrane survivability.” Proc., Geosynthetics ‘93, Vol. 2, Industrial Fabrics Association Int., Roseville, MN, 901–914.
Zanzinger, H. (1999). “Efficiency of geosynthetic protection layers for geomembrane liners: Performance in a large-scale model test.” Geosynthetics Int., 6(4), 303–317.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 140Issue 8August 2014

History

Received: Jul 16, 2012
Accepted: Mar 15, 2014
Published online: Apr 28, 2014
Published in print: Aug 1, 2014
Discussion open until: Sep 28, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Patrick J. Fox, M.ASCE [email protected]
Professor, Dept. of Structural Engineering, Univ. of California–San Diego, La Jolla, CA 92093 (corresponding author). E-mail: [email protected]
Stuart S. Thielmann
Development Engineer, Dept. of Structural Engineering, Univ. of California–San Diego, La Jolla, CA 92093.
Alexander N. Stern, A.M.ASCE
Staff Engineer, Geosyntec Consultants, 2100 Main St., Huntington Beach, CA 92648.
Chris Athanassopoulos, M.ASCE
Technical Support Engineer, CETCO, 2870 Forbs Ave., Hoffman Estates, IL 60192.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share