Abstract

This paper aims to present an integrated analytical model for geosynthetic-reinforced and pile-supported embankments (GRPSEs) by rationally combining the reinforced embankment, the pile-embedded soft soil foundation, the stress adjustment region, and the equal settlement region of the substratum. The embankment geometry boundary is considered for computing the additional stress beneath the adjustment region of the underlying stratum. The geosynthetic reinforcement (GR)-reinforced embankment together with the composite foundation is considered as a whole system by ensuring the consistency of differential settlement between pile and soil on the subsurface. The stress distribution predictions of the proposed model provide reasonable agreements with the previously published results. Parametric studies and quantitative results of this proposed analytical model show that the whole GRPSE is methodically combined. It is demonstrated that increasing the area converge ratio by decreasing the center-to-center spacing is seen to be a more effective way to enlarge pile efficiency, especially when the area converge ratio is less than 10%. Increasing the compression modulus of the embankment or embedment of pile-toe into a deeper underlying stratum will be beneficial to the increment of pile efficiency. The force captured by the pile increases almost linearly with the ratio of GR deflection to the clear pile spacing.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the high-level talent work launch fee funding project of Jinling Institute of Technology (Grant Nos. jit-b-202130 and jit-fhxm-202106); the Natural Science Research Project of Colleges and Universities in Jiangsu Province; the Open Fund of Key Laboratory of Flood & Drought Disaster Defense, the Ministry of Water Resources (Grant No. KYFB202112071053); and the National Key Research and Development Project (Grant No. 2018YFC1508505). The second author also acknowledges the support of the Shandong Excellent Young Scientists Fund Program (Overseas) (Grant No. 2022HWYQ-016), Shandong Provincial Natural Science Foundation (Grant No. ZR2021QE254), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515110564).

References

Alamgir, M., N. Miura, H. B. Poorooshasb, and M. R. Madhav. 1996. “Deformation analysis of soft ground reinforced by columnar inclusions.” Comput. Geotech. 18 (4): 267–290. https://doi.org/10.1016/0266-352X(95)00034-8.
Ariyarathne, P. U. 2014. “Numerical modelling of geosynthetic reinforced pile-supported embankments.” Ph.D. thesis, School of Computing, Engineering and Mathematics, Univ. of Western Sydney.
Bhasi, A., and K. Rajagopal. 2015. “Numerical study of basal reinforced embankments supported on floating/end bearing piles considering pile–soil interaction.” Geotext. Geomembr. 43 (6): 524–536. https://doi.org/10.1016/j.geotexmem.2015.05.003.
Briançon, L., and B. Simon. 2012. “Performance of pile-supported embankment over soft soil: Full-scale experiment.” J. Geotech. Geoenviron. Eng. 138 (4): 551–561. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000561.
BSI (British Standards Institution). 2010. Code of practice for strengthened/reinforced soils and other fills. BS8006-1. London: BSI.
Cao, W. Z., J. J. Zheng, J. Zhang, and R. J. Zhang. 2016. “Field test of a geogrid-reinforced and floating pile-supported embankment.” Geosynth. Int. 23 (5): 348–361. https://doi.org/10.1680/jgein.16.00002.
Chen, R. P., Y. M. Chen, J. Han, and Z. Z. Xu. 2008. “A theoretical solution for pile-supported embankments on soft soils under one-dimensional compression.” Can. Geotech. J. 45 (5): 611–623. https://doi.org/10.1139/T08-003.
Chen, R. P., Z. Z. Xu, and Y. M. Chen. 2010. “Field tests on pile-supported embankments over soft ground.” J. Geotech. Geoenviron. Eng. 136 (6): 777–785. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000295.
Cheng, Q. G., J. J. Wu, D. X. Zhang, and F. P. Ma. 2014. “Field testing of geosynthetic-reinforced and column-supported earth platforms constructed on soft soil.” Front. Struct. Civ. Eng. 8 (2): 124–139. https://doi.org/10.1007/s11709-014-0255-9.
Filz, G., J. Sloan, M. P. McGuire, J. Collin, and M. Smith. 2012. “Column-supported embankments: Settlement and load transfer.” In Geotechnical Engineering State of the Art and Practice, Geotechnical Special Publication 226, edited by K. Rollins and D. Zekkos, 54–77. Reston, VA: ASCE.
Geddes, J. D. 1966. “Stresses in foundation soils due to vertical subsurface loading.” Géotechnique 16 (3): 231–255. https://doi.org/10.1680/geot.1966.16.3.231.
GGS (German Geotechnical Society). 2010. Recommendation for design and analysis of earth structures using geosynthetic reinforcements. EBGEO. Hoboken, NJ: Wiley.
Girout, R., M. Blanc, D. Dias, and L. Thorel. 2014. “Numerical analysis of a geosynthetic-reinforced piled load transfer platform—Validation on centrifuge test.” Geotext. Geomembr. 42 (5): 525–539. https://doi.org/10.1016/j.geotexmem.2014.07.012.
Hewlett, W. J., and M. F. Randolph. 1988. “Analysis of piled embankments.” Ground Eng. 21 (3): 12–18.
IREX (Institut pour la Recherche Appliquée et l'expérimentation en Génie Civil). 2012. ASIRI national project: Recommendations for the design, construction and control of rigid inclusion ground improvements. Paris: Presses des Ponts.
Jiang, Y. B., N. He, Z. Q. Lin, M. S. Yao, and W. X. Li. 2018. “Numerical study on pipe pile composite foundation of deep soft foundation under embankment.” [In Chinese.] Hydro-Sci. Eng. 2: 43–51.
Jiang, Y. B., N. He, B. H. Xu, Z. L. Zhang, Z. Z. Geng, and B. X. Shi. 2020. “Geometrical modelling with finite element method and slope effect of geosynthetic reinforced and pile-supported embankments.” [In Chinese.] Hydro-Sci. Eng. 1: 84–91.
Kaluđer, J., M. Mulabdić, and K. Minažek. 2015. “Load transfer platforms-comparison of design methods.” E-GFOS 6 (10): 30–40. https://doi.org/10.13167/2015.10.4.
Khabbazian, M., V. N. Kaliakin, and C. L. Meehan. 2015. “Column supported embankments with geosynthetic encased columns: Validity of the unit cell concept.” Geotech. Geol. Eng. 33 (3): 425–442. https://doi.org/10.1007/s10706-014-9826-8.
King, L., A. Bouazza, C. Gaudin, C. D. O’Loughlin, and H. H. Bui. 2019. “Behavior of geosynthetic-reinforced piled embankments with defective piles.” J. Geotech. Geoenviron. Eng. 145 (11): 04019090. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002125.
Korff, M., R. J. Mair, and F. A. Van Tol. 2016. “Pile–soil interaction and settlement effects induced by deep excavations.” J. Geotech. Geoenviron. Eng. 142 (8): 04016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434.
Lai, H. J., J. J. Zheng, and M. J. Cui. 2021. “Improved analytical soil arching model for the design of piled embankments.” Int. J. Geomech. 21 (3): 04020261. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001929.
Li, B. L., J. Yu, Y. T. Zhou, Y. Y. Cai, S. Y. Liu, and B. X. Tu. 2021. “A computation model for pile–soil stress ratio of geosynthetic-reinforced pile-supported embankments based on soil consolidation settlement.” Alexandria Eng. J. 60 (1): 39–48. https://doi.org/10.1016/j.aej.2020.04.034.
Liu, H. L., G. Q. Kong, J. Chu, and X,M Ding. 2015. “Grouted gravel column-supported highway embankment over soft clay: Case study.” Can. Geotech. J. 52 (11): 1725–1733. https://doi.org/10.1139/cgj-2014-0284.
Liu, H. L., C. W. W. Ng, and K. Fei. 2007. “Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: Case study.” J. Geotech. Geoenviron. Eng. 133 (12): 1483–1493. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1483).
Liu, W. Z., S. Qu, H. Zhang, and Z. Nie. 2017. “An integrated method for analyzing load transfer in geosynthetic-reinforced and pile-supported embankment.” KSCE J. Civ. Eng. 21 (3): 687–702. https://doi.org/10.1007/s12205-016-0605-3.
Lou, Y., N. He, and B. Lou. 2011. Integrated technologies for post-construction settlement control of deep soft foundation of expressway. [In Chinese.] Beijing: China Communications Press.
Miao, L. C., F. Wang, and W. H. Lv. 2018. “A simplified calculation method for stress concentration ratio of composite foundation with rigid piles.” KSCE J. Civ. Eng. 22 (9): 3263–3270. https://doi.org/10.1007/s12205-018-1558-5.
Naughton, P. J. 2007. “The significance of critical height in the design of piled embankments.” In Sessions of Geo-Denver 2007, Soil Improvement, Geotechnical Special Publication 172, edited by V. R. Schaefer, G. M. Filz, M. Gallagher, A. L. Sehn, and K. J. Wissmann, 11–20. Reston, VA: ASCE.
Pham, T. A. 2020a. “Behaviour of piled embankment with multi-interaction arching model.” Géotech. Lett. 10: 1–7. https://doi.org/10.1680/jgele.19.00009.
Pham, T. A. 2020b. “Analysis of geosynthetic-reinforced pile-supported embankment with soil-structure interaction models.” Comput. Geotech. 121: 103438. https://doi.org/10.1016/j.compgeo.2020.103438.
Poulos, H. G., and E. H. Davis. 1974. Elastic solutions for soil and rock mechanics. New York: Wiley.
Rowe, R. K., and K. W. Liu. 2015. “Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile-supported embankment.” Can. Geotech. J. 52 (12): 2041–2054. https://doi.org/10.1139/cgj-2014-0506.
Rui, R., F. van Tol, Y. Xia, S. J. M. Van Eekelen, and G. Hu. 2018. “Evolution of soil arching: 2D analytical models.” Int. J. Geomech. 18 (6): 04018056. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001169.
Shen, P. P., C. Xu, and J. Han. 2020. “Centrifuge tests to investigate global performance of geosynthetic-reinforced pile-supported embankments with side slopes.” Geotext. Geomembr. 48: 120–127. https://doi.org/10.1016/j.geotexmem.2019.103527.
Terzaghi, K. 1943. Theoretical soil mechanics. New York: Wiley.
Van Eekelen, S. J. M., A. Bezuijen, H. J. Lodder, and A. F. van Tol. 2012a. “Model experiments on piled embankments. I.” Geotext. Geomembr. 32 (Jun): 69–81. https://doi.org/10.1016/j.geotexmem.2011.11.002.
Van Eekelen, S. J. M., A. Bezuijen, H. J. Lodder, and A. F. van Tol. 2012b. “Model experiments on piled embankments. II.” Geotext. Geomembr. 32 (Jun): 82–94. https://doi.org/10.1016/j.geotexmem.2011.11.003.
Van Eekelen, S. J. M., A. Bezuijen, and A. F. van Tol. 2011. “Analysis and modification of the British Standard BS8006 for the design of piled embankments.” Geotext. Geomembr. 29 (3): 345–359. https://doi.org/10.1016/j.geotexmem.2011.02.001.
Van Eekelen, S. J. M., A. Bezuijen, and A. F. Van Tol. 2013. “An analytical model for arching in piled embankments.” Geotext. Geomembr. 39: 78–102. https://doi.org/10.1016/j.geotexmem.2013.07.005.
Van Eekelen, S. J. M., A. Bezuijen, and A. F. van Tol. 2015. “Validation of analytical models for the design of basal reinforced piled embankments.” Geotext. Geomembr. 43 (1): 56–81. https://doi.org/10.1016/j.geotexmem.2014.10.002.
Van Eekelen, S. J. M., and M. H. A. Brugman, eds. 2016. Design guideline basal reinforced piled embankments. revision of the design guideline. CUR226. Delft, Netherlands: SBRCURnet & CRC Press.
Wang, Z. F., W. C. Cheng, Y. Q. Wang, and J. Q. Du. 2018. “Simple method to predict settlement of composite foundation under embankment.” Int. J. Geomech. 18 (12): 04018158. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001293.
Wong, K. S., and C. I. Teh. 1995. “Negative skin friction on piles in layered soil deposits.” J. Geotech. Eng. 121 (6): 457–465. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:6(457).
Yapage, N. N. S., and D. S. Liyanapathirana. 2014. “A parametric study of geosynthetic-reinforced column-supported embankments.” Geosynth. Int. 21 (3): 213–232. https://doi.org/10.1680/gein.14.00010.
Zaeske, D. 2001. “Zur Wirkungsweise von unbewehrten und bewehrten mineralischen Tragschichten über pfahlartigen Gründungselementen.” In Schriftenreihe Geotechnik. [In German.] Kassel, Germany: Uni Kassel.
Zhang, C. F., M. H. Zhao, S. Zhou, and Z. Y. Xu. 2019. “A theoretical solution for pile-supported embankment with a conical pile-head.” Appl. Sci. 9 (13): 2658. https://doi.org/10.3390/app9132658.
Zhang, C. L., G. L. Jiang, X. F. Liu, and O. Buzzi. 2016. “Arching in geogrid-reinforced pile-supported embankments over silty clay of medium compressibility: Field data and analytical solution.” Comput. Geotech. 77: 11–25. https://doi.org/10.1016/j.compgeo.2016.03.007.
Zhang, J., J. J. Zheng, and Q. Ma. 2013. “Mechanical analysis of fixed geosynthetic technique of GRPS embankment.” J. Cent. South Univ. 20 (5): 1368–1375. https://doi.org/10.1007/s11771-013-1624-6.
Zhang, S. A., M. H. Zhao, L. P. He, and L. Zhang. 2011. “Calculation of settlement of composite foundation with rigid piles under flexible ground.” J. Highway Transp. Res. Dev. 5 (2): 15–21. https://doi.org/10.1061/JHTRCQ.0000058.
Zhao, L. S., W. H. Zhou, X. Geng, K. V. Yuen, and B. Fatahi. 2019. “A closed-form solution for column-supported embankments with geosynthetic reinforcement.” Geotext. Geomembr. 47 (3): 389–401. https://doi.org/10.1016/j.geotexmem.2019.01.006.
Zhao, M. H., Q. Chen, and L. Zhang. 2011. “Calculation of pile-soil stress ratio of rigid pile composite foundation with consideration of upward penetration of piles.” J. Highway Transp. Res. Dev. 5 (1): 1–6.
Zheng, J. J., J. Zhang, Q. Ma, and Y. K. Dong. 2012. “Experimental investigation of geogrid-reinforced and pile-supported embankment at bridge approach.” [In Chinese.] Chin. J. Geotech. Eng. 34 (2): 355–362.
Zhou, M., H. L. Liu, Y. M. Chen, and Y. X. Hu. 2016. “First application of cast-in-place concrete large-diameter pipe (PCC) pile-reinforced railway foundation: A field study.” Can. Geotech. J. 53 (4): 708–716. https://doi.org/10.1139/cgj-2014-0547.
Zhuang, Y., and K. Y. Wang. 2015. “Three-dimensional behavior of biaxial geogrid in a piled embankment: Numerical investigation.” Can. Geotech. J. 52 (10): 1629–1635. https://doi.org/10.1139/cgj-2014-0538.
Zhuang, Y., and K. Y. Wang. 2017. “Analytical solution for reinforced piled embankments on elastoplastic consolidated soil.” Int. J. Geomech. 17 (9): 06017010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000926.
Zhuang, Y., K. Y. Wang, and H. L. Liu. 2014. “A simplified model to analyze the reinforced piled embankments.” Geotext. Geomembr. 42 (2): 154–165. https://doi.org/10.1016/j.geotexmem.2014.01.002.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 12December 2022

History

Received: Apr 28, 2021
Accepted: Jun 12, 2022
Published online: Sep 27, 2022
Published in print: Dec 1, 2022
Discussion open until: Feb 27, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Lecturer, School of Architectural Engineering, Jinling Institute of Technology, Nanjing 211169, China; Key Laboratory of Flood and Drought Disaster Defense, Ministry of Water Resources, Nanjing 210029, China. ORCID: https://orcid.org/0000-0002-1301-0705. Email: [email protected]; [email protected]
Professor, School of Qilu Transportation, Shandong Univ., Jinan 250002, China; Shenzhen Research Institute of Shandong Univ., Shenzhen 518057, China (corresponding author). ORCID: https://orcid.org/0000-0001-8846-5184. Email: [email protected]
Research Fellow, NUS Environmental Research Institute, Dept. of Civil and Environmental Engineering, National Univ. of Singapore, Singapore 117576, Singapore. ORCID: https://orcid.org/0000-0001-9616-5480. Email: [email protected]
Professor, Geotechnical Engineering Dept., Nanjing Hydraulic Research Institute, Nanjing 210024, China. Email: [email protected]
Professor, Geotechnical Engineering Dept., Nanjing Hydraulic Research Institute, Nanjing 210024, China. Email: [email protected]
Beixiao Shi [email protected]
Professor, Geotechnical Engineering Dept., Nanjing Hydraulic Research Institute, Nanjing 210024, China. Email: [email protected]
Master’s Student, School of Qilu Transportation, Shandong Univ., Jinan 250002, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share