Technical Papers
Aug 22, 2022

Evolution of Nanomechanical and Macroscale Mechanical Responses of Expansive Clay during Swelling

Publication: International Journal of Geomechanics
Volume 22, Issue 11

Abstract

A controlled uniaxial swelling device is used to saturate sodium-montmorillonite (Na-MMT) clay samples and allow them to swell to various swelling levels. Nanomechanical experiments are conducted on the saturated samples at 0%, 10%, and 20% swelling levels to evaluate the force–displacement response, modulus of elasticity, and hardness and compare those values with those obtained for undisturbed dry clay. Unconfined compressive strength experiments are conducted to evaluate the undrained response for the swelling levels used in the nanomechanical experiments. The modulus of elasticity and hardness decreases with an increase in swelling but is higher than the dry clay. The clay particles also break down into smaller sizes with an increase in swelling. Swelling significantly impacts the unconfined compressive strength, nanomechanical properties, and microstructure of swelling clay. The mechanical properties of swelling clay at various length scales from macroscale to nanoscale and at different swelling levels are essential for the development of models to accurately predict the shear strength of swelling clay, critical for the economical and safe design of civil infrastructures.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The support by the US Department of Transportation, Mountain Plains Consortium (MPC) Grants MPC-506 (Agreement No. DTRT13-G-UTC38) and MPC-548 (Agreement No. 69A3551747108) is acknowledged. The nanoindentation instrument was purchased from NSF IMR Grant No. 0315513. The authors acknowledge Mr. Sharad Jaswandkar for the Berkovich tip drawings. The guidance provided by Dr. Scott Payne during microscopy experiments and 3D printing is acknowledged.

References

Abdelrahman, M., D. R. Katti, A. Ghavibazoo, H. B. Upadhyay, and K. S. Katti. 2014. “Engineering physical properties of asphalt binders through nanoclay-asphalt interactions.” J. Mater. Civ. Eng. 26 (12): 04014099. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001017.
Alonso, E. E., J. Vaunat, and A. Gens. 1999. “Modelling the mechanical behaviour of expansive clays.” Eng. Geol. 54 (1–2): 173–183. https://doi.org/10.1016/S0013-7952(99)00079-4.
Amarasinghe, P. M., K. S. Katti, and D. R. Katti. 2008. “Molecular hydraulic properties of montmorillonite: A polarized Fourier transform infrared spectroscopic study.” Appl. Spectrosc. 62 (12): 1303–1313. https://doi.org/10.1366/000370208786822269.
Amarasinghe, P. M., K. S. Katti, and D. R. Katti. 2009. “Nature of organic fluid-montmorillonite interactions: An FTIR spectroscopic study.” J. Colloid Interface Sci. 337 (1): 97–105. https://doi.org/10.1016/j.jcis.2009.05.011.
Amarasinghe, P. M., K. S. Katti, and D. R. Katti. 2012. “Insight into role of clay-fluid molecular interactions on permeability and consolidation behavior of Na-montmorillonite swelling clay.” J. Geotech. Geoenviron. Eng. 138 (2): 138–146. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000567.
Ambre, A. H., D. R. Katti, and K. S. Katti. 2013. “Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds.” J. Biomed. Mater. Res., Part A 101: 2644–2660. https://doi.org/10.1002/jbm.a.34561.
Anandarajah, A. 1997. “Influence of particle orientation on one-dimensional compression of montmorillonite.” J. Colloid Interface Sci. 194 (1): 44–52. https://doi.org/10.1006/jcis.1997.5068.
ASTM. 2016. Standard test method for unconfined compressive strength of cohesive soil. D2166-16. West Conshohocken, PA: ASTM.
Bérend, I., J. M. Cases, M. François, J. P. Uriot, L. Michot, A. Masion, and F. Thomas. 1995. “Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms.” Clays Clay Miner. 43 (3): 324–336. https://doi.org/10.1346/CCMN.1995.0430307.
Bhowmik, R., K. S. Katti, and D. R. Katti. 2008. “Influence of mineral on the load deformation behavior of polymer in hydroxyapatite-polyacrylic acid nanocomposite biomaterials: A steered molecular dynamics study.” J. Nanosci. Nanotechnol. 8 (4): 2075–2084. https://doi.org/10.1166/jnn.2008.18267.
Bobko, C., and F. J. Ulm. 2008. “The nano-mechanical morphology of shale.” Mech. Mater. 40 (4–5): 318–337. https://doi.org/10.1016/j.mechmat.2007.09.006.
Boek, E. S., P. V. Coveney, and N. T. Skipper. 1995. “Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: Understanding the role of potassium as a clay swelling inhibitor.” J. Am. Chem. Soc. 117 (50): 12608–12617. https://doi.org/10.1021/ja00155a025.
Cases, J. M., I. Berend, G. Besson, M. Francois, J. P. Uriot, F. Thomas, and J. E. Poirier. 1992. “Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form.” Langmuir 8 (11): 2730–2739. https://doi.org/10.1021/la00047a025.
Chapuis, R. P. 1990. “Sand–bentonite liners: Predicting permeability from laboratory tests.” Can. Geotech. J. 27 (1): 47–57. https://doi.org/10.1139/t90-005.
Chen, F. H. 1975. Foundations on expansive soils. Amsterdam, Netherlands: Elsevier.
Daphalapurkar, N. P., F. Wang, B. Fu, H. Lu, and R. Komanduri. 2011. “Determination of mechanical properties of sand grains by nanoindentation.” Exp. Mech. 51 (5): 719–728. https://doi.org/10.1007/s11340-010-9373-z.
Das, B. M., and K. Sobhan. 2013. Principles of geotechnical engineering. Boston: Cengage Learning.
Estabragh, A. R., H. Rafatjo, and A. A. Javadi. 2014. “Treatment of an expansive soil by mechanical and chemical techniques.” Geosynth. Int. 21 (3): 233–243. https://doi.org/10.1680/gein.14.00011.
Faisal, H. M. N., K. S. Katti, and D. R. Katti. 2021. “Molecular mechanics of the swelling clay tactoid under compression, tension and shear.” Appl. Clay Sci. 200: 105908. https://doi.org/10.1016/j.clay.2020.105908.
Fischer-Cripps, A. C., and D. W. Nicholson. 2004. “Nanoindentation mechanical engineering series.” Appl. Mech. Rev. 57 (2): B12. https://doi.org/10.1115/1.1704625.
Ghosh, P., D. R. Katti, and K. S. Katti. 2007. “Mineral proximity influences mechanical response of proteins in biological mineral–protein hybrid systems.” Biomacromolecules 8 (3): 851–856. https://doi.org/10.1021/bm060942h.
Ghosh, P., D. R. Katti, and K. S. Katti. 2008. “Mineral and protein-bound water and latching action control mechanical behavior at protein–mineral interfaces in biological nanocomposites.” J. Nanomater. 2008: 1–8. https://doi.org/10.1155/2008/582973.
Grim, R. E. 1953. Clay mineralogy. New York: McGraw-Hill.
Hedan, S., F. Hubert, D. Prêt, E. Ferrage, V. Valle, and P. Cosenza. 2015. “Measurement of the elastic properties of swelling clay minerals using the digital image correlation method on a single macroscopic crystal.” Appl. Clay Sci. 116–117: 248–256. https://doi.org/10.1016/j.clay.2015.04.002.
Hejazi, S. M., M. Sheikhzadeh, S. M. Abtahi, and A. Zadhoush. 2012. “A simple review of soil reinforcement by using natural and synthetic fibers.” Constr. Build. Mater. 30: 100–116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
Kadali, S., S. Sharma, and D. N. Singh. 2013. “Application of nanoindentation to establish influence of heat on soils.” Eng. Geol. 162: 14–21. https://doi.org/10.1016/j.enggeo.2013.05.004.
Katti, D. R., M. I. Matar, K. S. Katti, and P. M. Amarasinghe. 2009. “Multiscale modeling of swelling clays: A computational and experimental approach.” KSCE J. Civ. Eng. 13 (4): 243–255. https://doi.org/10.1007/s12205-009-0243-0.
Katti, D. R., S. R. Schmidt, P. Ghosh, and K. S. Katti. 2005. “Modeling the response of pyrophyllite interlayer to applied stress using steered molecular dynamics.” Clays Clay Miner. 53 (2): 171–178. https://doi.org/10.1346/CCMN.2005.0530207.
Katti, D. R., S. R. Schmidt, P. Ghosh, and K. S. Katti. 2007. “Molecular modeling of the mechanical behavior and interactions in dry and slightly hydrated sodium montmorillonite interlayer.” Can. Geotech. J. 44 (4): 425–435. https://doi.org/10.1139/t06-127.
Katti, D. R., and V. Shanmugasundaram. 2001. “Influence of swelling on the microstructure of expansive clays.” Can. Geotech. J. 38 (1): 175–182. https://doi.org/10.1139/t00-079.
Katti, D. R., L. Srinivasamurthy, and K. S. Katti. 2015. “Molecular modeling of initiation of interlayer swelling in Na-montmorillonite expansive clay.” Can. Geotech. J. 52 (9): 1385–1395. https://doi.org/10.1139/cgj-2014-0309.
Katti, D. R., K. B. Thapa, and K. S. Katti. 2018. “The role of fluid polarity in the swelling of sodium-montmorillonite clay: A molecular dynamics and Fourier transform infrared spectroscopy study.” J. Rock Mech. Geotech. Eng. 10 (6): 1133–1144. https://doi.org/10.1016/j.jrmge.2018.07.001.
Katti, K. S., and D. R. Katti. 2006. “Relationship of swelling and swelling pressure on silica-water interactions in montmorillonite.” Langmuir 22 (2): 532–537. https://doi.org/10.1021/la051533u.
Kayabali, K. 1997. “Engineering aspects of a novel landfill liner material: Bentonite-amended natural zeolite.” Eng. Geol. 46 (2): 105–114. https://doi.org/10.1016/S0013-7952(96)00102-0.
Mallikarjunachari, G., T. Nallamilli, P. Ravindran, and M. G. Basavaraj. 2018. “Nanoindentation of clay colloidosomes.” Colloids Surf., A 550: 167–175. https://doi.org/10.1016/j.colsurfa.2018.04.041.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. Hoboken, NJ: Wiley
Murray, H. H. 1999. “Applied clay mineralogy today and tomorrow.” Clay Miner. 34 (1): 39–49. https://doi.org/10.1180/000985599546055.
Oliver, W. C., and G. M. Pharr. 1992. “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.” J. Mater. Res. 7 (6): 1564–1583. https://doi.org/10.1557/JMR.1992.1564.
Ortega, J. A., F. J. Ulm, and Y. Abousleiman. 2009. “The nanogranular acoustic signature of shale.” Geophysics 74 (3): D65–D84. https://doi.org/10.1190/1.3097887.
Pradhan, S. M., K. S. Katti, and D. R. Katti. 2015. “Evolution of molecular interactions in the interlayer of Na-montmorillonite swelling clay with increasing hydration.” Int. J. Geomech. 15 (5): 04014073. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000412.
Puppala, A. J., and C. Musenda. 2000. “Effects of fiber reinforcement on strength and volume change in expansive soils.” Transp. Res. Rec. 1736 (1): 134–140. https://doi.org/10.3141/1736-17.
Sebastián, E., G. Cultrone, D. Benavente, L. L. Fernandez, K. Elert, and C. Rodriguez-Navarro. 2008. “Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain).” J. Cult. Heritage 9 (1): 66–76. https://doi.org/10.1016/j.culher.2007.09.002.
Sikdar, D., S. M. Pradhan, D. R. Katti, K. S. Katti, and B. Mohanty. 2008. “Altered phase model for polymer clay nanocomposites.” Langmuir 24 (10): 5599–5607. https://doi.org/10.1021/la800583h.
Smith, D. E., Y. Wang, and H. D. Whitley. 2004. “Molecular simulations of hydration and swelling in clay minerals.” Fluid Phase Equilib. 222–223: 189–194. https://doi.org/10.1016/j.fluid.2004.06.023.
Sridharan, A., S. N. Rao, and G. V. Rao. 1971. “Shear strength characteristics of saturated montmorillonite and kaolinite clays.” Soils Found. 11 (3): 1–22. https://doi.org/10.3208/sandf1960.11.3_1.
Teppen, B. J., K. Rasmussen, P. M. Bertsch, D. M. Miller, and L. Schäfer. 1997. “Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite.” J. Phys. Chem. B 101 (9): 1579–1587. https://doi.org/10.1021/jp961577z.
Thapa, K. B., K. S. Katti, and D. R. Katti. 2020. “Compression of Na-montmorillonite swelling clay interlayer is influenced by fluid polarity: A steered molecular dynamics study.” Langmuir 36 (40): 11742–11753. https://doi.org/10.1021/acs.langmuir.0c01412.
Vanorio, T., M. Prasad, and A. Nur. 2003. “Elastic properties of dry clay mineral aggregates, suspensions and sandstones.” Geophys. J. Int. 155 (1): 319–326. https://doi.org/10.1046/j.1365-246X.2003.02046.x.
Wang, Y. X., P. P. Guo, W. X. Ren, B. X. Yuan, H. P. Yuan, Y. L. Zhao, S. B. Shan, and P. Cao. 2017. “Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement.” Int. J. Geomech. 17 (11): 04017101. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000998.
Wang, Z. 2001. “Fundamentals of seismic rock physics.” Geophysics 66 (2): 398–412. https://doi.org/10.1190/1.1444931.
Wyckoff, R. W. G. 1948. Crystal structures. New York: Interscience.
Xiao, Y., L. Long, T. Matthew Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Yilmaz, Y. 2015. “Compaction and strength characteristics of fly ash and fiber amended clayey soil.” Eng. Geol. 188: 168–177. https://doi.org/10.1016/j.enggeo.2015.01.018.
Zhang, J., F. Li, L. Zeng, J. Peng, and J. Li. 2021. “Numerical simulation of the moisture migration of unsaturated clay embankments in southern China considering stress state.” Bull. Eng. Geol. Environ. 80 (1): 11–24. https://doi.org/10.3389/feart.2021.783273.
Zhang, J., J. Peng, A. Zhang, and J. Li. 2020. Prediction of permanent deformation for subgrade soils under traffic loading in southern China. Int. J. Pavement Eng. 1–10. https://doi.org/10.1080/10298436.2020.1765244.
Zhang, G. P., Z. X. Wei, and R. E. Ferrell. 2009. “Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation.” Appl. Clay Sci. 43 (2): 271–281. https://doi.org/10.1016/j.clay.2008.08.010.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 11November 2022

History

Received: Feb 18, 2021
Accepted: Jun 4, 2022
Published online: Aug 22, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 22, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Keshab B. Thapa, M.ASCE
Graduate Student, Dept. of Civil, Construction and Environmental Engineering, North Dakota State Univ., Fargo, ND 58105.
Kalpana S. Katti, M.ASCE https://orcid.org/0000-0002-1404-4018
University Distinguished Professor, Dept. of Civil, Construction and Environmental Engineering, North Dakota State Univ., Fargo, ND 58105. ORCID: https://orcid.org/0000-0002-1404-4018.
Jordan A. Enberg Presidential Professor, Dept. of Civil, Construction and Environmental Engineering, North Dakota State Univ., Fargo, ND 58105 (corresponding author). ORCID: https://orcid.org/0000-0001-9866-2683. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Molecular dynamics simulation of illite: From particle associations to hydration properties, Applied Clay Science, 10.1016/j.clay.2023.106850, 234, (106850), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share