Technical Papers
Dec 9, 2021

Novel Approach for Generating Homogeneous Samples for Discrete-Element-Method Studies

Publication: International Journal of Geomechanics
Volume 22, Issue 2

Abstract

A novel approach––the modified multilayer method––is proposed for generating homogeneous specimens for discrete-element-method (DEM) studies. The “particle boundary” is introduced at the interface between the layers, and the general servocontrolled technique is extended to the particle boundary to apply the stress field. Each layer of the specimen is compacted by moving the top and bottom boundaries simultaneously to generate the desired DEM specimen. Unlike existing methods, the proposed approach generates highly homogeneous specimens. The mechanism underpinning the new approach was determined by investigating the effect of the boundary movement on the final spatial distribution of the particles. A comparison with experimental direct-shear results shows that homogeneous samples generated using the proposed approach can accurately model the deformation and strength of granular material, whereas other methods lead to deviations due to sample inhomogeneity.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51988101, 51908493, and 41961144018), the Natural Science Foundation of Zhejiang Province (Grant No. LCZ19E080002), and the Fundamental Research Funds for the Central Universities (Grant Nos. 2019FZA4016 and 2019QNA4035). This support is gratefully acknowledged.

Notation

The following symbols are used in this paper:
Aw
wall boundary area;
ac
degree of anisotropy;
Ds
shear displacement;
d
branch vector joining the particle centers;
e¯
average void ratio;
e0
initial void ratio;
ei
void ratio of the ith element;
et
target void ratio;
ey
unit vector in the y-direction;
Fcy
vertical force on the boundary;
fni
normal contact force at the ith boundary-particle contact point;
fsi
tangential contact force at the ith boundary-particle contact point;
kn
normal stiffness;
ks
tangential stiffness;
nc
unit normal vectors of the contact;
ng
number of grids;
nl
layer number;
np
total particle number;
ns
slipping contact number;
r¯
average particle radius;
rb
radius of interior particle;
rw
radius of boundary particle;
Sc
slide fraction;
Se
variance of the void ratio;
Sx
variance of the horizontal stress;
Sy
variance of the vertical stress;
T
layer thickness;
v
velocity of the boundary;
α
relaxation factor;
αd
local damping coefficient;
δ
gap between layers;
Δδn
relative displacements in the normal direction;
Δδs
relative displacements in the tangential direction;
μg
interparticle friction coefficient;
ϕμ
interparticle friction angle;
ρ
particle density;
σ1i
vertical stress of the ith element;
σ3i
horizontal stress of the ith element;
σc
current confining pressure;
σt
target confining pressure;
Δt
timestep increment;
tc
unit tangential vectors of the contact;
θ
angle between the normal contact and the x-direction; and
θc
principal direction of the strong contact forces.

References

Allersma, H. 2005. “Optical analysis of stress and strain in shear zones.” In Proc., Int. Conf. on Powders and Grains, 187–191. Delft, Netherlands: Delft University of Technology, Stuttgart.
Al-Shibli, K., E. Macari, and S. Sture. 1996. “Digital imaging techniques for assessment of homogeneity of granular materials.” Transp. Res. Rec. 1526: 121–128. https://doi.org/10.1177/0361198196152600115.
Arthur, J. R. F., and A. B. Phillips. 1975. “Homogeneous and layered sand in triaxial compression.” Géotechnique 25 (4): 799–815. https://doi.org/10.1680/geot.1975.25.4.799.
Bagi, K. 2005. “An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies.” Granular Matter 7 (1): 31–43. https://doi.org/10.1007/s10035-004-0187-5.
Belheine, N., J.-P. Plassiard, F.-V. Donzé, F. Darve, and A. Seridi. 2009. “Numerical simulation of drained triaxial test using 3D discrete element modeling.” Comput. Geotech. 36 (1–2): 320–331. https://doi.org/10.1016/j.compgeo.2008.02.003.
Bendahmane, F., D. Marot, and A. Alexis. 2008. “Experimental parametric study of suffusion and backward erosion.” J. Geotech. Geoenviron. Eng. 134 (1): 57–67. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(57).
Chakrabortty, P., and R. Popescu. 2012. “Numerical simulation of centrifuge tests on homogeneous and heterogeneous soil models.” Comput. Geotech. 41: 95–105. https://doi.org/10.1016/j.compgeo.2011.11.008.
Chen, Y. M., W. P. Cao, and R. P. Chen. 2008. “An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments.” Geotext. Geomembr. 26 (2): 164–174. https://doi.org/10.1016/j.geotexmem.2007.05.004.
Cheng, Y. F., S. J. Guo, and H. Y. Lai. 2000. “Dynamic simulation of random packing of spherical particles.” Powder Technol. 107 (1–2): 123–130. https://doi.org/10.1016/S0032-5910(99)00178-3.
Cheung, G., and C. O’Sullivan. 2008. “Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations.” Particuology 6 (6): 483–500. https://doi.org/10.1016/j.partic.2008.07.018.
Cui, L., and C. O’Sullivan. 2003. “Analysis of a triangulation based approach for specimen generation for discrete element simulations.” Granular Matter 5 (3): 135–145. https://doi.org/10.1007/s10035-003-0145-7.
Cundall, P. A., and O. D. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Dai, B. 2010. “Micromechanical investigation of the behavior of granular materials.” Doctor Ph.D. thesis, Dept. of Civil Engineering, Hong Kong Univ.
Dai, B.-B., and J. Yang. 2017. “Shear strength of assemblies of frictionless particles.” Int. J. Geomech. 17: 11.
Dai, B. B., J. Yang, and X. D. Luo. 2015. “A numerical analysis of the shear behavior of granular soil with fines.” Particuology 21: 160–172. https://doi.org/10.1016/j.partic.2014.08.010.
Dai, B. B., J. Yang, C. Y. Zhou, and X. D. Luo. 2016. “DEM investigation on the effect of sample preparation on the shear behavior of granular soil.” Particuology 25: 111–121. https://doi.org/10.1016/j.partic.2015.03.010.
Ding, X. H., T. Ma, and X. M. Huang. 2019. “Discrete-element contour-filling modeling method for micromechanical and macromechanical analysis of aggregate skeleton of asphalt mixture.” J. Transp. Eng. Part B. Pavements 145 (1): 04018056. https://doi.org/10.1061/JPEODX.0000083.
Duan, N., and Y. P. Cheng. 2016. “A modified method of generating specimens for a 2D DEM centrifuge model.” In Geo-Chicago 2016: Sustainable Materials and Resource Conservation, Geotechnical Special Publication 272, edited by K. R. Reddy, N. Yesiller, D. Zekkos, A. Farid, and A. De, 610–620. Reston, VA: ASCE.
Feng, Y. T., K. Han, and D. Owen. 2003. “Filling domains with disks: an advancing front approach.” Int. J. Numer. Methods Eng. 56 (5): 699–713. https://doi.org/10.1002/nme.583.
Fu, P. C., and Y. F. Dafalias. 2011. “Study of anisotropic shear strength of granular materials using DEM simulation.” Int. J. Numer. Anal. Methods Geomech. 35 (10): 1098–1126. https://doi.org/10.1002/nag.945.
Furukawa, R., K. Kadota, T. Noguchi, A. Shimosaka, and Y. Shirakawa. 2017. “DEM modelling of granule rearrangement and fracture behaviours during a closed-die compaction.” AAPS PharmSciTech 18 (6): 2368–2377. https://doi.org/10.1208/s12249-017-0719-z.
Gao, Z. G., Z. C. Li, and M. Alam. 2017. “Study on the microscopic structure and the bearing capacity of the elliptical granular system in the random particle size.” In Proc., Int. Conf. on Discrete Element Methods, edited by X. Li, Y. Feng, and G. Mustoe, 161–168. Singapore: Springer.
Gu, X. Q., M. S. Huang, and J. G. Qian. 2014. “DEM investigation on the evolution of microstructure in granular soils under shearing.” Granular Matter 16 (1): 91–106. https://doi.org/10.1007/s10035-013-0467-z.
Guo, N., and J. D. Zhao. 2013. “The signature of shear-induced anisotropy in granular media.” Comput. Geotech. 47: 1–15. https://doi.org/10.1016/j.compgeo.2012.07.002.
Hu, Z., D. Wang, X. M. Tong, L. H. Li, and R. P. Behringer. 2019. “Granular scale responses in the shear band region.” Granular Matter 21 (4): 1–6. https://doi.org/10.1007/s10035-019-0958-7.
Iwashita, K., and M. Oda. 2000. “Micro-deformation mechanism of shear banding process based on modified distinct element method.” Powder Technol. 109 (1–3): 192–205. https://doi.org/10.1016/S0032-5910(99)00236-3.
Jewell, R., and C. Wroth. 1987. “Direct shear tests on reinforced sand.” Géotechnique 37 (1): 53–68. https://doi.org/10.1680/geot.1987.37.1.53.
Jiang, M., F.-Z. Wang, and H. Zhu. 2010. “Shear band formation in ideal dense sand in direct shear test by discrete element analysis.” [In Chinese.] Rock Soil Mech. 31 (1): 253–257.
Jiang, M. D., Z. X. Yang, D. Barreto, and Y. H. Xie. 2018a. “The influence of particle-size distribution on critical state behavior of spherical and non-spherical particle assemblies.” Granular Matter 20 (4): 80. https://doi.org/10.1007/s10035-018-0850-x.
Jiang, M. J., J. M. Konrad, and S. Leroueil. 2003. “An efficient technique for generating homogeneous specimens for DEM studies.” Comput. Geotech. 30 (7): 579–597. https://doi.org/10.1016/S0266-352X(03)00064-8.
Jiang, M. J., J. Liu, Z. F. Shen, and B. L. Xi. 2018b. “Exploring the critical state properties and major principal stress rotation of sand in direct shear test using the distinct element method.” Granular Matter 20 (2): 25. https://doi.org/10.1007/s10035-018-0796-z.
Jiang, M. J., H. B. Yan, H. H. Zhu, and S. Utili. 2011. “Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses.” Comput. Geotech. 38 (1): 14–29. https://doi.org/10.1016/j.compgeo.2010.09.001.
Jiang, M. J., Z. Y. Yin, and Z. F. Shen. 2016. “Shear band formation in lunar regolith by discrete element analyses.” Granular Matter 18 (2): 32. https://doi.org/10.1007/s10035-016-0635-z.
Kong, C. M., and J. J. Lannutti. 2000. “Effect of agglomerate size distribution on loose packing fraction.” J. Am. Ceram. Soc. 83 (9): 2183–2188. https://doi.org/10.1111/j.1151-2916.2000.tb01533.x.
Kuhn, M. R., and K. Bagi. 2009. “Specimen size effect in discrete element simulations of granular assemblies.” J. Eng. Mech. 135 (6): 485–492. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:6(485).
Kuhn, M. R., H. E. Renken, A. D. Mixsell, and S. L. Kramer. 2014. “Investigation of cyclic liquefaction with discrete element simulations.” J. Geotech. Geoenviron. Eng. 140 (12): 04014075. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001181.
Ladd, R. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lai, H. J., J. J. Zheng, J. Zhang, R. J. Zhang, and L. Cui. 2014. “DEM analysis of “soil”-arching within geogrid-reinforced and unreinforced pile-supported embankments.” Comput. Geotech. 61: 13–23. https://doi.org/10.1016/j.compgeo.2014.04.007.
Lai, H., J. Zheng, R. Zhang, and M. Cui. 2016. “Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation.” J. Zhejiang University-SCIENCE A 17 (10): 803–817. https://doi.org/10.1631/jzus.A1500302.
Li, B., L. Guo, and F. Zhang. 2014. “Macro-micro investigation of granular materials in torsional shear test.” J. Cent. South Univ. 21 (7): 2950–2961. https://doi.org/10.1007/s11771-014-2262-3.
Li, S., A. R. Russell, and D. M. Wood. 2020. “Influence of particle-size distribution homogeneity on shearing of soils subjected to internal erosion.” Can. Geotech. J. 57 (11): 1684–1694. https://doi.org/10.1139/cgj-2019-0273.
Li, X., H. S. Yu, and X. S. Li. 2013. “A virtual experiment technique on the elementary behaviour of granular materials with discrete element method.” Int. J. Numer. Anal. Methods Geomech. 37 (1): 75–96. https://doi.org/10.1002/nag.1086.
Li, Z. F., Y. H. Wang, X. Li, and Q. Yuan. 2017. “Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods.” Acta Geotech. 12 (3): 541–557. https://doi.org/10.1007/s11440-017-0542-4.
Liu, J. Y., A. Wautier, S. Bonelli, F. Nicot, and F. Darve. 2020. “Macroscopic softening in granular materials from a mesoscale perspective.” Int. J. Solids Struct. 193–194: 222–238. https://doi.org/10.1016/j.ijsolstr.2020.02.022.
Liu, S. H. 1999. “Development of a new direct shear test and its application to the problems of slope stability and bearing capacity.” Doctor Ph.D. thesis, Dept. of Civil Engineering, Nagoya Institute of Technology.
Liu, S. H., D. Sun, and H. Matsuoka. 2005. “On the interface friction in direct shear test.” Comput. Geotech. 32 (5): 317–325. https://doi.org/10.1016/j.compgeo.2005.05.002.
Lozano, E., D. Roehl, W. Celes, and M. Gattass. 2016. “An efficient algorithm to generate random sphere packs in arbitrary domains.” Comput. Math. Appl. 71 (8): 1586–1601. https://doi.org/10.1016/j.camwa.2016.02.032.
Lu, L. Q., and W. J. Peng. 2015. “Test research on inhomogenetiy of triaxial test samples prepared by on-way hierarchical compaction method.” [In Chinese.] Technol. Highway Transp. 2: 5–8.
Masson, S., and J. Martinez. 2001. “Micromechanical analysis of the shear behavior of a granular material.” J. Eng. Mech. 127 (10): 1007–1016. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:10(1007).
Mollon, G., A. Quacquarelli, E. Andò, and G. Viggiani. 2020. “Can friction replace roughness in the numerical simulation of granular materials?” Granular Matter 22 (2): 42. https://doi.org/10.1007/s10035-020-1004-5.
Mühlhaus, H.-B., and I. Vardoulakis. 1987. “The thickness of shear bands in granular materials.” Géotechnique 37 (3): 271–283. https://doi.org/10.1680/geot.1987.37.3.271.
Nadimi, S., and J. Fonseca. 2018. “A micro finite-element model for soil behaviour: numerical validation.” Géotechnique 68 (4): 364–369. https://doi.org/10.1680/jgeot.16.P.163.
O’Sullivan, C., J. D. Bray, and M. Riemer. 2004. “Examination of the response of regularly packed specimens of spherical particles using physical tests and discrete element simulations.” J. Eng. Mech. 130 (10): 1140–1150. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1140).
OuYang, Y. P., Q. Yang, and L. Yu. 2017. “An efficient dense and stable particular elements generation method based on geometry.” Int. J. Numer. Methods Eng. 110 (11): 1003–1020. https://doi.org/10.1002/nme.5433.
Rechenmacher, A., S. Abedi, and O. Chupin. 2010. “Evolution of force chains in shear bands in sands.” Géotechnique 60 (5): 343–351. https://doi.org/10.1680/geot.2010.60.5.343.
Rothenburg, L., and R. J. Bathurst. 1989. “Analytical study of induced anisotropy in idealized granular materials.” Géotechnique 39 (4): 601–614. https://doi.org/10.1680/geot.1989.39.4.601.
Rothenburg, L., and R. J. Bathurst. 1992. “Micromechanical features of granular assemblies with planar elliptical particles.” Géotechnique 42 (1): 79–95. https://doi.org/10.1680/geot.1992.42.1.79.
Rowe, P. W. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. R. Soc. London, Ser. A 269 (1339): 500–527.
Rui, R., F. van Tol, X. L. Xia, S. van Eekelen, G. Hu, and Y. Y. Xia. 2016. “Evolution of soil arching; 2D DEM simulations.” Comput. Geotech. 73: 199–209. https://doi.org/10.1016/j.compgeo.2015.12.006.
Siiriä, S., and J. Yliruusi. 2007. “Particle packing simulations based on Newtonian mechanics.” Powder Technol. 174 (3): 82–92. https://doi.org/10.1016/j.powtec.2007.01.001.
Syed, Z., M. Tekeste, and D. White. 2017. “A coupled sliding and rolling friction model for DEM calibration.” J. Terramech. 72: 9–20. https://doi.org/10.1016/j.jterra.2017.03.003.
Tabaroei, A., S. Abrishami, and E. S. Hosseininia. 2017. “Comparison between two different pluviation setups of sand specimens.” J. Mater. Civ. Eng. 29 (10): 04017157. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001985.
Thomson, P. R., and R. C. K. Wong. 2008. “Specimen nonuniformities in water-pluviated and moist-tamped sands under undrained triaxial compression and extension.” Can. Geotech. J. 45 (7): 939–956. https://doi.org/10.1139/T08-023.
Thornton, C. 2000. “Numerical simulations of deviatoric shear deformation of granular media.” Géotechnique 50 (1): 43–53. https://doi.org/10.1680/geot.2000.50.1.43.
Thornton, C., and L. Zhang. 2001. “A DEM comparison of different shear testing devices.” In Powders and grains, edited by Y. Kishino, 183–190. London: CRC Press.
Vaid, Y. P., S. Sivathayalan, and D. Stedman. 1999. “Influence of specimen-reconstituting method on the undrained response of sand.” Geotech. Test. J. 22 (3): 187–195. https://doi.org/10.1520/GTJ11110J.
Valera, R. R., I. P. Morales, S. Vanmaercke, C. R. Morfa, L. A. Cortés, and H. D.-G. Casañas. 2015. “Modified algorithm for generating high volume fraction sphere packings.” Comput. Part. Mech. 2 (2): 161–172. https://doi.org/10.1007/s40571-015-0045-8.
Wang, J., J. E. Dove, and M. S. Gutierrez. 2007. “Discrete-continuum analysis of shear banding in the direct shear test.” Géotechnique 57 (6): 513–526. https://doi.org/10.1680/geot.2007.57.6.513.
Wu, H., A. Papazoglou, G. Viggiani, C. Dano, and J. Zhao. 2020. “Compaction bands in Tuffeau de Maastricht: insights from X-ray tomography and multiscale modeling.” Acta Geotech. 15 (1): 39–55. https://doi.org/10.1007/s11440-019-00904-9.
Wu, H., J. Zhao, and N. Guo. 2019a. “Multiscale modeling of compaction bands in saturated high-porosity sandstones.” Eng. Geol. 261: 105282. https://doi.org/10.1016/j.enggeo.2019.105282.
Wu, Q. X., Z. X. Yang, and X. Li. 2019b. “Numerical simulations of granular material behavior under rotation of principal stresses: micromechanical observation and energy consideration.” Meccanica 54 (4–5): 723–740. https://doi.org/10.1007/s11012-018-00939-4.
Xu, X. M., D. S. Ling, Y. P. Cheng, and Y. M. Chen. 2015. “Correlation between liquefaction resistance and shear wave velocity of granular soils: a micromechanical perspective.” Géotechnique 65 (5): 337–348. https://doi.org/10.1680/geot.SIP.15.P.022.
Yamamoto, S. 1995. “Fundamental study on mechanical behavior of granular materials by DEM.” Dr. Eng. thesis, Dept. of Civil Engineering, Nagoya Institute of Technology.
Zeng, D. Z., E. B. Zhang, Y. Y. Ding, Y. G. Yi, Q. B. Xian, G. J. Yao, H. J. Zhu, and T. H. Shi. 2018. “Investigation of erosion behaviors of sulfur-particle-laden gas flow in an elbow via a CFD-DEM coupling method.” Powder Technol. 329: 115–128. https://doi.org/10.1016/j.powtec.2018.01.056.
Zhao, J. D., and N. Guo. 2015. “The interplay between anisotropy and strain localisation in granular soils: a multiscale insight.” Géotechnique 65 (8): 642–656. https://doi.org/10.1680/geot.14.P.184.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 2February 2022

History

Received: May 30, 2021
Accepted: Oct 12, 2021
Published online: Dec 9, 2021
Published in print: Feb 1, 2022
Discussion open until: May 9, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Tiantian Hu
Ph.D. Student, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang Univ., Hangzhou, China 310058.
Associate Professor, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang Univ., Hangzhou, China 310058 (corresponding author). Email: [email protected]
Daosheng Ling
Professor, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang Univ., Hangzhou, China 310058.
Xiukai Wang
Ph.D. Student, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang Univ., Hangzhou, China 310058.
Bo Huang
Professor, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang Univ., Hangzhou, China 310058.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share