Abstract

The mechanical behavior of binary granular mixtures strongly depends on their initial packing density, stress level, fine content, particle size distribution, mineralogy, and shape. This research aims to investigate the effect on the mechanical behavior of fine-sand mixtures of fine particle fraction through various features: grain size distribution, fine particle size, and plasticity. The concept of equivalent intergranular void ratio is proposed for this analysis. It is correlated to the micromechanical activation of fines within the sand matrix. Monotonic consolidated undrained triaxial tests are carried out for mixtures of coarse particles (sand) and fine particles (silt or clay), in the sand dominant behavior, having various shapes and grain-size distributions. Loose, medium, and dense mixtures are tested using different fine contents and confining pressures. The undrained response is strongly affected by particle interactions, depending on the packing density, particle size, and plasticity. The active fine fraction captures the active contribution of fine particles in the sand skeleton structure. It influences the equivalent intergranular void ratio estimated in these experiments and associated to the steady state of mixtures. The reliability of equivalent state theory and an original formula proposed to estimate the active fine fraction is demonstrated in the case of fine-sand mixtures having plastic fine particles and confirmed for non-plastic fines.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research is carried out in the framework of the French National Project “Characterizing and Improving SOiLs AgainsT liquEfaction” (ISOLATE, Projet-ANR-17-CE22-0009) funded by the French National Research Agency.

References

Abedi, M., and S. S. Yasrobi. 2010. “Effects of plastic fines on the instability of sand.” Soil Dyn. Earthquake Eng. 30 (3): 61–67. https://doi.org/10.1016/j.soildyn.2009.09.001.
ASTM. 2003. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D 4318-00. West Conshohocken, PA: ASTM.
Barnett, N., M. M. Rahman, M. R. Karim, H. B. K. Nguyen, and J. A. H. Carraro. 2021. “Equivalent state theory for mixtures of sand with non-plastic fines: A DEM investigation.” Géotechnique 71 (5): 423–440.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112.
Belkhatir, M., A. Arab, N. Della, and T. Schanz. 2012. “Experimental study of undrained shear strength of silty sand: Effect of fines and gradation.” Geotech. Geol. Eng. 30 (5): 1103–1118. https://doi.org/10.1007/s10706-012-9526-1.
Bouferra, R., and I. Shahrour. 2004. “Influence of fines on the resistance to liquefaction of a clayey sand.” Proc. Inst. Civ. Eng.—Ground Improv. 8 (1): 1–5. https://doi.org/10.1680/grim.2004.8.1.1.
Boulanger, R., and I. M. Idriss. 2014. CPT and SPT based liquefaction triggering procedures. Rep. No. UCD/CGM. Davis, CA: Dept. of Civil and Environmental Engineering, College of Engineering, University of California.
Bray, J. D., and R. B. Sancio. 2006. “Assessment of the liquefaction susceptibility of fine-grained soils.” J. Geotech. Geoenviron. Eng. 132 (9): 1165–1177. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1165).
Castro, G. 1969. Liquefaction of sands. Cambridge: Harvard University.
Chang, C. S., and Y. Deng. 2019. “Revisiting the concept of inter-granular void ratio in view of particle packing theory.” Géotech. Lett. 9 (2): 121–129. https://doi.org/10.1680/jgele.18.00175.
Cubrinovski, M., and K. Ishihara. 2002. “Maximum and minimum void ratio characteristics of sands.” Soils Found. 42 (6): 65–78. https://doi.org/10.3208/sandf.42.6_65.
Cubrinovski, M., S. Rees, and B. Elisabeth. 2010. “Effects of non-plastic fines on liquefaction resistance of sandy soils.” In Earthquake Engineering in Europe, edited by M. Garevski and A. Ansal, 125–144. Dordrecht, Netherlands: Springer.
Georgiannou, V., J. Burland, and D. Hight. 1990. “The undrained behaviour of clayey sands in triaxial compression and extension.” Géotechnique 40 (3): 431–449. https://doi.org/10.1680/geot.1990.40.3.431.
Georgiannou, V. N. 2006. “The undrained response of sands with additions of particles of various shapes and sizes.” Géotechnique 56 (9): 639–649. https://doi.org/10.1680/geot.2006.56.9.639.
Ghahremani, M., and A. Ghalandarzadeh. 2006. “Effect of plastic fines on cyclic resistance of sands.” In Soil and rock behavior and modeling, Geotechnical Special Publication 150, edited by R. Luna, Z. Hong, G. Ma, and M. Huang, 406–412. Reston, VA: ASCE.
Ghahremani, M., A. Ghalandarzadeh, and M. Moradi. 2006. “Effect of plastic fines on the undrained behavior of sands.” In Soil and rock behavior and modeling, Geotechnical Special Publication 150, edited by R. Luna, Z. Hong, G. Ma, and M. Huang, 48–54. Reston, VA: ASCE.
Gobbi, S., P. Reiffsteck, L. Lenti, M. P. Santisi d'Avila, and J. F. Semblat. 2021. “Liquefaction triggering in silty sands: Effects of non-plastic fines and mixture-packing conditions.” Acta Geotech. 1–20.
Gratchev, I. B., K. Sassa, V. I. Osipov, and V. N. Sokolov. 2006. “The liquefaction of clayey soils under cyclic loading.” Eng. Geol. 86 (1): 70–84. https://doi.org/10.1016/j.enggeo.2006.04.006.
Guo, T., and S. Prakash. 1999. “Liquefaction of silts and silt–clay mixtures.” J. Geotech. Geoenviron. Eng. 125 (8): 706–710. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(706).
Ishihara, K. 1993. “Liquefaction and flow failure during earthquakes.” Geotechnique 43 (3): 351–451.
JGS (Japanese Geotechnical Society). 2009. Test method for minimum and maximum densities of sands. JGS-0161Standards of the Japanese Geotechnical Society. Tokyo: JGS.
Kanagalingam, T., and S. Thevanayagam. 2005. “Discussion: Contribution of fines to the compressive strength of mixed soils.” Géotechnique 55 (8): 627–628. https://doi.org/10.1680/geot.2005.55.8.627.
Kim, U., D. Kim, and L. Zhuang. 2016. “Influence of fines content on the undrained cyclic shear strength of sand-clay mixtures.” Soil Dyn. Earthquake Eng. 83: 124–134. https://doi.org/10.1016/j.soildyn.2016.01.015.
Konrad, J. M. 1990. “Minimum undrained strength of two sands.” J. Geotech. Eng. 116 (6): 932–947.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lade, P. V., C. D. Liggio, and J. A. Yamamuro. 1998. “Effects of non-plastic fines on minimum and maximum void ratios of sand.” Geotech. Test. J. 21: 336–347. https://doi.org/10.1520/GTJ11373J.
Lade, P. V., and J. A. Yamamuro. 1997. “Effects of non-plastic fines on static liquefaction of sands.” Can. Geotech. J. 34 (6): 918–928. https://doi.org/10.1139/t97-052.
Lashkari, A. 2014. “Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content.” Soil Dyn. Earthquake Eng. 61–62: 212–238. https://doi.org/10.1016/j.soildyn.2014.02.012.
Lashkari, A. 2016. “Prediction of flow liquefaction instability of clean and silty sands.” Acta Geotech. 11 (5): 987–1014. https://doi.org/10.1007/s11440-015-0413-9.
Li, X. S., and Y. Wang. 1998. “Linear representation of steady-state line for sand.” J. Geotech. Geoenviron. Eng. 124 (12): 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215).
Md. Mizanur, R., and S. R. Lo. 2012. “Predicting the onset of static liquefaction of loose sand with fines.” J. Geotech. Geoenviron. Eng. 138 (8): 1037–1041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000661.
Mohammadi, A., and A. Qadimi. 2015. “A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio.” Acta Geotech. 10 (5): 587–606. https://doi.org/10.1007/s11440-014-0318-z.
Monkul, M. M., E. Etminan, and A. Şenol. 2017. “Coupled influence of content, gradation and shape characteristics of silts on static liquefaction of loose silty sands.” Soil Dyn. Earthquake Eng. 101: 12–26. https://doi.org/10.1016/j.soildyn.2017.06.023.
Murthy, T. G., D. Loukidis, J. A. H. Carraro, M. Prezzi, and R. Salgado. 2008. “Discussion: Undrained monotonic response of clean and silty sands.” Géotechnique 58 (6): 536–538. https://doi.org/10.1680/geot.2008.58.6.536.
Nguyen, T. K., N. Benahmed, and P. Y. Hicher. 2017. “Determination of the equivalent intergranular void ratio—Application to the instability and the critical state of silty sand.” EPJ Web Conf. 140 (3): 02019.
Ni, Q., T. S. Tan, G. R. Dasari, and D. W. Hight. 2004. “Contribution of fines to the compressive strength of mixed soils.” Géotechnique 54 (9): 561–569. https://doi.org/10.1680/geot.2004.54.9.561.
NRC (National Research Council). 1985. Liquefaction of soils during earthquakes. Washington, DC: NRC.
Papadopoulou, A. I., and T. Tika. 2008. “The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands.” Soils Found. 48 (5): 713–725. https://doi.org/10.3208/sandf.48.713.
Papadopoulou, A. I., and T. M. Tika. 2016. “The effect of fines plasticity on monotonic undrained shear strength and liquefaction resistance of sands.” Soil Dyn. Earthquake Eng. 88: 191–206. https://doi.org/10.1016/j.soildyn.2016.04.015.
Perlea, V. G. 2000. “Liquefaction of cohesive soils.” In Soil Dynamics and Liquefaction Geotechnical Special Publication 107, edited by R. Y. S. Pak and J. Yamamura, 58–76. Reston, VA: ASCE.
Pitman, T. D., P. K. Robertson, and D. C. Sego. 1994. “Influence of fines on the collapse of loose sands.” Can. Geotech. J. 31 (5): 728–739. https://doi.org/10.1139/t94-084.
Poulos, S. J., G. Castro, and J. W. France. 1985. “Liquefaction evaluation procedure.” J. Geotech. Eng. 111 (6): 772–792.
Rahman, M. M., M. A. L. Baki, and S. R. Lo. 2014. “Prediction of undrained monotonic and cyclic liquefaction behavior of sand with fines based on the equivalent granular state parameter.” Int. J. Geomech. 14 (2): 254–266. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000316.
Rahman, M. M., and S. R. Lo. 2014. “Undrained behavior of sand-fines mixtures and their state parameter.” J. Geotech. Geoenviron. Eng. 140 (7): 04014036–12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001115.
Rahman, M. M., S. R. Lo, and M. A. L. Baki. 2011. “Equivalent granular state parameter and undrained behaviour of sand-fines mixtures.” Acta Geotech. 6 (4): 183–194. https://doi.org/10.1007/s11440-011-0145-4.
Rahman, M. M., S. R. Lo, and C. T. Gnanendran. 2008. “On equivalent granular void ratio and steady state behaviour of loose sand with fines.” Can. Geotech. J. 45 (10): 1439–1456. https://doi.org/10.1139/T08-064.
Rahman, M. M., and T. G. Sitharam. 2020. “Cyclic liquefaction screening of sand with non-plastic fines: Critical state approach.” Geosci. Front. 11 (2): 429–438. https://doi.org/10.1016/j.gsf.2018.09.009.
Salgado, R., P. Bandini, and A. Karim. 2000. “Shear strength and stiffness of silty sand.” J. Geotech. Geoenviron. Eng. 126 (5): 451–462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451).
Sarkar, D., M. Goudarzy, D. Ko, and T. Wichtmann. 2020. “Influence of particle shape and size on the threshold fines content and the limit index void ratios of sands containing non-plastic fines.” Soils Found. 60 (3): 621–633. https://doi.org/10.1016/j.sandf.2020.02.006.
Seed, R. B., et al. 2003. “Recent advances in soil liquefaction engineering: A unified and consistent framework.” In Proc., 26th Annual ASCE Los Angeles Geotechnical Spring Seminar. Berkeley, CA: College of Engineering, Univ. of California.
Sitharam, T. G., and H. K. Dash. 2008. “Effect of non-plastic fines on cyclic behaviour of sandy soils.” In GeoCongress 2008: Geosustainability and Geohazard Mitigation, 319–326, edited by K. R. Reddy, M. V. Khire, and A. N. Alshawabkeh. Reston, VA: ASCE.
Stamatopoulos, C. A. 2010. “An experimental study of the liquefaction strength of silty sands in terms of the state parameter.” Soil Dyn. Earthquake Eng. 30 (8): 662–678. https://doi.org/10.1016/j.soildyn.2010.02.008.
Talamkhani, S., and S. A. Naeini. 2018. “Effect of plastic fines on undrained behavior of clayey sands.” Int. J. Geotech. Geol. Eng. 12 (8): 525–528.
Tan, C. S., A. Marto, T. K. Leong, and L. S. Teng. 2013. “The role of fines in liquefaction susceptibility of sand matrix soils.” Electron. J. Geotech. Eng. 18 L: 2355–2368.
Terzaghi, K., R. B. Peck, and G. Mesri. 1996. Soil mechanics in engineering practice. Hoboken, NJ: Wiley.
Thevanayagam, S. 2000. “Liquefaction potential and undrained fragility of silty soils.” In Proc., 12th World Conf. on Earthquake Engineering. Wellington, New Zealand: New Zealand Society of Earthquake Engineering.
Thevanayagam, S. 2007. “Intergrain contact density indices for granular mixes—II: Liquefaction resistance.” Earthquake Eng. Eng. Vibr. 6 (2): 135–146. https://doi.org/10.1007/s11803-007-0706-6.
Thevanayagam, S., and G. R. Martin. 2002. “Liquefaction in silty soils—Screening and remediation issues.” Soil Dyn. Earthquake Eng. 22 (9–12): 1035–1042. https://doi.org/10.1016/S0267-7261(02)00128-8.
Thevanayagam, S., T. Shenthan, S. Mohan, and J. Liang. 2002. “Undrained fragility of clean sands, silty sands, and sandy silts.” J. Geotech. Geoenviron. Eng. 128 (10): 849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
Verdugo, R., and K. Ishihara. 1996. “The steady state of sandy soils.” Soils Found. 36 (2): 81–91. https://doi.org/10.3208/sandf.36.2_81.
Yamamuro, J. A., F. M. Wood, and P. V. Lade. 2008. “Effect of depositional method on the microstructure of silty sand.” Can. Geotech. J. 45 (11): 1538–1555. https://doi.org/10.1139/T08-080.
Yang, S. L., R. Sandven, and L. Grande. 2006. “Steady-state lines of sand–silt mixtures.” Can. Geotech. J. 43 (11): 1213–1219. https://doi.org/10.1139/t06-069.
Youd, B. T. L., et al. 2001. “Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils.” J. Geotech. Geoenviron. Eng. 127 (4): 297–313. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297).
Zlatović, S., and K. Ishihara. 1995. “On the influence of non-plastic fines on residual strength.” In Proc., 1st Int. Conf. on Earthquake Geotechnical Engineering, 239–244. Rotterdam, Netherlands: A.A. Balkema, Brookfield.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 1January 2022

History

Received: Apr 22, 2021
Accepted: Sep 11, 2021
Published online: Nov 12, 2021
Published in print: Jan 1, 2022
Discussion open until: Apr 12, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Stefania Gobbi [email protected]
Université Gustave Eiffel, IFSTTAR (GERS/SRO), 14-20 Boulevard Newton, 77420 Champs sur Marne, France (corresponding author). Email: [email protected]
Maria Paola Santisi d’Avila [email protected]
Assistant Professor, Polytech'Lab, Université Cote d'Azur, UPR 7498, Biot 06410, France. Email: [email protected]
Research Director, Cerema, Equipe-Projet MOUVGS, Sophia Antipolis 06903, France; Université Gustave Eiffel, IFSTTAR (GERS/SRO), Champs sur Marne 77420, France. ORCID: https://orcid.org/0000-0002-3470-9195. Email: [email protected]
Jean-François Semblat, M.ASCE [email protected]
Professor, IMSIA (UMR9219), CNRS, EDF, CEA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau 91120, Paris, France. Email: [email protected]
Research Director, Université Gustave Eiffel, IFSTTAR (GERS/SRO), Champs sur Marne 77420, France. ORCID: https://orcid.org/0000-0002-1006-3668. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Behaviour Under Monotonic Loading, Influence of Fine Particles on the Liquefaction Properties of a Reference Sand, 10.1007/978-3-031-24299-1_3, (65-97), (2023).
  • Bibliographic Review, Influence of Fine Particles on the Liquefaction Properties of a Reference Sand, 10.1007/978-3-031-24299-1_1, (1-41), (2023).
  • Shear-Induced Instability of Sand Containing Fines: Using the Equivalent Intergranular Void Ratio as a State Variable, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002486, 22, 8, (2022).
  • Liquefaction assessment of silty sands: Experimental characterization and numerical calibration, Soil Dynamics and Earthquake Engineering, 10.1016/j.soildyn.2022.107349, 159, (107349), (2022).
  • Constitutive model for soil-rock mixtures in the light of an updated skeleton void ratio concept, Acta Geotechnica, 10.1007/s11440-022-01756-6, (2022).
  • Thermally induced volume change behavior of sand–clay mixtures, Acta Geotechnica, 10.1007/s11440-022-01744-w, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share