Technical Papers
Oct 14, 2021

Semiautomatic Determination of the Geological Strength Index Using SfM and ANN Techniques

Publication: International Journal of Geomechanics
Volume 21, Issue 12

Abstract

With the popularization of unmanned aerial vehicles, low-cost, high-precision photogrammetry has become a useful tool for mapping and obtaining information in areas that are difficult to access. It has been applied in geomechanics because it makes it possible to obtain information from rock masses for which there is no alternative way to obtain information by traditional mapping methods, increases the frequency of analysis and reduces the exposure of professionals to unsafe conditions. In this study, we used the technique called structure from motion to acquire 2D images and create a three-dimensional point cloud. Then, using artificial neural network techniques, we implemented a semiautomatic classification of the rock mass using the Geological Strength Index (GSI). The routine was validated using five datasets with different geological characteristics, choosing the neural network with the best performance, presenting results with confidence intervals above 90%, 100% hit rates, and a low mean squared error. The procedure allows a standardized interpretation, intended to reduce the bias generated by the interpretation through a rapid and repeatable analysis, in addition to the creation of a systematic record report.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The code used in this study is available online in accordance with funder data retention policies. The algorithm was written in m-code, and the open source code is available on the GSI_Classifier_v1 GitHub page https://github.com/MariliaAbrao/GSI_Classifier_v1 (Zeni et al. 2020a).
The data used in this study are available online in accordance with funder data retention policies. The data are available on the Figshare repository. https://doi.org/10.6084/m9.figshare.13123061 (Zeni et al. 2020b).

Acknowledgments

The equipment used was supplied by the Mining Engineering Department of the Federal University of Rio Grande do Sul. The work was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), a foundation linked to the Ministry of Education of Brazil.

References

Agisoft. n.d. “Discover intelligent photogrammetry with Metashape.” Accessed March 16, 2021. https://www.agisoft.com/.
Antony, A. V., and J. E. Dove. 2006. “Semiautomatic rock mass discontinuity detection using digital images.” In GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, edited by D. J. DeGroot, J. T. DeJong, D. Frost, and L. G. Baise, 275–280. Reston, VA: ASCE.
Assali, P., P. Grussenmeyer, T. Villemin, N. Pollet, and F. Viguier. 2014. “Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection.” J. Struct. Geol. 66: 102–114. https://doi.org/10.1016/j.jsg.2014.05.014.
Barton, N., R. Lien, and J. Lunde. 1974. “Engineering classification of rock masses for the design of tunnel support.” Rock Mech. 6 (4): 189–236. https://doi.org/10.1007/BF01239496.
Bieniawski, Z. T. 1973. “Engineering classification of jointed rock masses.” Trans. South Afr. Inst. Civ. Eng. 15: 335–344.
Bishop, C. M. 1995. Neural network for pattern recognition. Oxford, UK: Claredon Press.
Bolkas, D., I. Vazaios, A. Peidou, and N. Vlachopoulos. 2017. “Detection of rock discontinuity traces using terrestrial LiDAR data and space-frequency transforms.” Geotech. Geol. Eng. 36 (3): 1745–1765. https://doi.org/10.1007/s10706-017-0430-6.
Buyer, A., and W. Schubert. 2017. “Calculation the spacing of discontinuities from 3D point clouds.” Procedia Eng. 191: 270–278. https://doi.org/10.1016/j.proeng.2017.05.181.
Buyer, A., and W. Schubert. 2018. “Joint trace detection in digital images.” In ISRM Int. Symp.—10th Asian Rock Mechanics Symp. Richardson, TX: OnePetro. Accessed April 15, 2021. https://onepetro.org/ISRMARMS/proceedings-abstract/ARMS1018/All-ARMS1018/ISRM-ARMS10-2018-241/43347.
Chen, S., M. L. Walske, and I. J. Davies. 2018. “Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation.” Int. J. Rock Mech. Min. Sci. 110: 28–35. https://doi.org/10.1016/j.ijrmms.2018.07.012.
Crosta, G. 1997. “Evaluating rock mass geometry from photographic images.” Rock Mech. Rock Eng. 30 (1): 35–58. https://doi.org/10.1007/BF01020112.
Deere, D. U. 1968. “Geological consideration.” In Rock mechanics in engineering practice, edited by K. G. Stagg and O. C. Zienkiewicz, 1–20. London: Wiley.
Dijkstra, E. W. 1959. “A note on two problems in connexion with graphs.” Numer. Math. 1 (1): 269–271. https://doi.org/10.1007/BF01386390.
DJI. n.d.-a. “Mavic Pro.” Accessed March 16, 2021. https://www.dji.com/mavic?site=brandsite&from=recommended.
DJI. n.d.-b. “Phantom 4 Pro.” Accessed March 16, 2021. https://www.dji.com/phantom-4-pro-v2?site=brandsite&from=insite_search.
Firpo, G., R. Salvini, M. Francioni, and P. G. Ranjith. 2011. “Use of digital terrestrial photogrammetry in rocky slope stability analysis by distinct elements numerical methods.” Int. J. Rock Mech. Min. Sci. 48 (7): 1045–1054. https://doi.org/10.1016/j.ijrmms.2011.07.007.
Franklin, J. A., N. H. Maerz, and C. P. Bennett. 1988. “Rock mass characterization using photoanalysis.” Int. J. Min. Geol. Eng. 6 (2): 97–112. https://doi.org/10.1007/BF00880801.
Gallant, M. J., and J. A. Marshall. 2016. “Automated rapid mapping of joint orientations with mobile LiDAR.” Int. J. Rock Mech. Min. Sci. 90: 1–14. https://doi.org/10.1016/j.ijrmms.2016.09.014.
Gholami, R., V. Rasouli, and A. Alimoradi. 2012. “Improved RMR rock mass classification using artificial intelligence algorithms.” Rock Mech. Rock Eng. 46 (5): 1199–1209. https://doi.org/10.1007/s00603-012-0338-7.
Gigli, G., and N. Casagli. 2011. “Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds.” Int. J. Rock Mech. Min. Sci. 48 (2): 187–198. https://doi.org/10.1016/j.ijrmms.2010.11.009.
Girardeau—Montaut, D. 2015. “Cloud compare—3d point cloud and mesh processing software.” Open Source Project.
Gomes, R. K., L. P. L. de Oliveira, L. J. Gonzaga, F. M. W. Tognoli, M. R. Veronez, and M. K. de Souza. 2016. “An algorithm for automatic detection and orientation estimation of planar structures in LiDAR-scanned outcrops.” Comput. Geosci. 90: 170–178. https://doi.org/10.1016/j.cageo.2016.02.011.
Graupe, D. 2013. Principles of artificial neural networks. Singapore: World Scientific.
Guo, L., J. Liao, F. Zhong, J. Chen, H. Huang, X. Yu, and K. Dong. 2012a. “Automated detection of rock discontinuity trace based on digital image processing and SVM.” J. Sichuan Univ. 44 (6): 203–210.
Guo, L., J. Liao, F. Zhong, K. Dong, X. Liu, J. Tao, and J. Chen. 2012b. “A semi-automated methodology for rock mass discontinuity trace map construction.” In Proc., 4th Int. Conf. on Image Analysis and Signal Processing, 1–5. Piscataway, NJ: IEEE.
Guo, J., Y. Liu, L. Wu, S. Liu, T. Yang, W. Zhu, and Z. Zhang. 2019. “A geometry- and texture-based automatic discontinuity trace extraction method for rock mass point cloud.” Int. J. Rock Mech. Min. Sci. 124: 104–132. https://doi.org/10.1016/j.ijrmms.2019.104132.
Guo, J., L. Wu, M. Zhang, S. Liu, and X. Sun. 2018. “Towards automatic discontinuity trace extraction from rock mass point cloud without triangulation.” Int. J. Rock Mech. Min. Sci. 112: 226–237. https://doi.org/10.1016/j.ijrmms.2018.10.023.
Hadjigeorgiou, J., F. Lemy, P. Côté, and X. Maldague. 2003. “An evaluation of image analysis algorithms for constructing discontinuity trace maps.” Rock Mech. Rock Eng. 36 (2): 163–179. https://doi.org/10.1007/s00603-002-0041-1.
Haneberg, W. C. 2008. “Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States.” Bull. Eng. Geol. Environ. 67 (4): 457–469. https://doi.org/10.1007/s10064-008-0157-y.
Hoek, E. 1983. “Strength of jointed rock masses.” Géotechnique 33 (3): 187–223. https://doi.org/10.1680/geot.1983.33.3.187.
Hoek, E. 1994. “Strength of rock and rock masses.” ISRM News J. 2 (2): 4–16.
Hoek, E., and E. T. Brown. 1980a. Underground excavations in rock. 1st ed. London: Institution of Mining and Metallurgy.
Hoek, E., and E. T. Brown. 1980b. “Empirical strength criterion for rock masses.” J. Geotech. Eng. Div. 106 (9): 1013–1035. https://doi.org/10.1061/AJGEB6.0001029.
Hoek, E., and E. T. Brown. 1988. “The Hoek–Brown failure criterion—A 1988 update.” In Proc., 15th Rock Engineering for Underground Excavations, Canadian Rock Mechanics Symp., edited by J. C. Curran, 31–38. Toronto: University of Toronto.
Hoek, E., and E. T. Brown. 1997. “Practical estimates of rock mass strength.” Int. J. Rock Mech. Min. Sci. 34 (8): 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
Hoek, E., and E. T. Brown. 2019. “The hoek–brown failure criterion and GSI—2018 edition.” Int. J. Rock Mech. Min. Sci. 11 (3): 445–463. https://doi.org/10.1016/j.jrmge.2018.08.001.
Hoek, E., and P. Marinos. 2000. “Predicting tunnel squeezing problems in weak heterogeneous rock masses.” Tunn. Tunn. Int. 32 (11): 45–51.
Hoek, E., C. Carranza-Torres, and B. Corkum. 2002. “Hoek–Brown criterion—2002 edition.” In Proc., 5th North American Rock Mechanics Symposium and 17th Tunnelling Association of Canada Conf.—Mining and Tunnelling Innovation and Opportunity, edited by R. Hammah, W. Bawden, J. Curran, and M. Telesnicki, 267–273. Toronto: University of Toronto Press.
Hoek, E., C. Carranza-Torres, M. S. Diederichs, and B. Corkum. 2008. “Integration of geotechnical and structural design in tunneling.” In Proc., 56th Annual Geotechnical Engineering Conf., 1–53. Accessed October 20, 2020. https://www.rocscience.com/learning/hoeks-corner/lectures.
Hoek, E., T. G. Carter, and M. S. Diederichs. 2013. “Quantification of the geological strength index chart.” In Proc., 47th US Rock Mechanics/Geomechanics Symp. San Francisco: American Rock Mechanics Association. Accessed October 20, 2020. https://www.rocscience.com/learning/hoeks-corner/publications.
Hoek, E., P. K. Kaiser, and W. F. Bawden. 1995. Support of underground excavations in hard rock. Rotterdam, Netherlands: Balkema.
Hoek, E., and P. Marinos. 2007. “A brief history of the development of the Hoek–Brown failure criterion.” J. Soils Rocks 2 (2): 1–11.
Hoek, E., P. Marinos, and M. Benissi. 1998. “Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation.” Bull. Eng. Geol. Environ. 57 (2): 151–160. https://doi.org/10.1007/s100640050031.
Hoek, E., P. Marinos, and V. Marinos. 2005. “Characterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses.” Int. J. Rock Mech. Min. Sci. 42 (2): 277–285. https://doi.org/10.1016/j.ijrmms.2004.09.015.
Hoek, E., D. Wood, and S. Shah. 1992. “A modified Hoek–Brown criterion for jointed rock masses.” In ISRM Symp. on Rock Characterization, edited by J. A. Hudson, 209–214. London: Thomas Telford.
Hong, K., E. Han, and K. Kang. 2017. “Determination of geological strength index of jointed rock mass based on image processing.” J. Rock Mech. Geotech. Eng. 9 (4): 702–708. https://doi.org/10.1016/j.jrmge.2017.05.001.
Kemeny, J., and J. Donovan. 2005. “Rock mass characterisation using LIDAR and automated point cloud processing.” Ground Eng. 38 (11): 26–29.
Kennedy, J., and R. Eberhart. 1995. “Particle swarm optimization.” In Int. Conf. on Neural Networks, 1942–1948. Piscataway, NJ: IEEE.
Khatik, V. M., and A. K. Nandi. 2018. “A generic method for rock mass classification.” J. Rock Mech. Geotech. Eng. 10 (1): 102–116. https://doi.org/10.1016/j.jrmge.2017.09.007.
Kim, D. H., A. S. Balasubramaniam, and I. Gratchev. 2018. “Application of photogrammetry and image analysis for rock slope investigation.” Geotech. Eng. 49 (2): 49–56.
Kim, D. H., G. Poropat, I. Gratchev, and A. Balasubramaniam. 2016. “Assessment of the accuracy of close distance photogrammetric JRC data.” Rock Mech. Rock Eng. 49 (11): 4285–4301. https://doi.org/10.1007/s00603-016-1042-9.
Lato, M., M. S. Diederichs, D. J. Hutchinson, and R. Harrap. 2009. “Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses.” Int. J. Rock Mech. Min. Sci. 46 (1): 194–199. https://doi.org/10.1016/j.ijrmms.2008.04.007.
Lemos, A., W. Caminhas, and F. Gomide. 2013. “Evolving intelligent systems: Methods, algorithms and applications.” In Vol. 13 of Emerging paradigms in machine learning. Smart innovation, systems and technologies, edited by S. Ramanna, L. C. Jain, and R. J. Howlett, 117–159. Berlin: Springer.
Lemy, F., and J. Hadjigeorgiou. 2003. “Discontinuity trace map construction using photographs of rock exposures.” Int. J. Rock Mech. Min. Sci. 40 (6): 903–917. https://doi.org/10.1016/S1365-1609(03)00069-8.
Lemy, F., and J. Hadjigeorgiou. 2004. “A digital face mapping case study in an underground hard rock mine.” Can. Geotech. J. 41 (6): 1011–1025. https://doi.org/10.1139/t04-046.
Leng, B., H. Yang, G. Hou, and A. Lyamin. 2021. “Rock mass trace line identification incorporated with grouping algorithm at tunnel faces.” Tunnelling Underground Space Technol. 110: 103810. https://doi.org/10.1016/j.tust.2021.103810.
Levenberg, K. 1944. “A method for the solution of certain non-linear problems in least squares.” Q. Appl. Math. 2 (2): 164–168. https://doi.org/10.1090/qam/10666.
Li, X., Z. Chen, J. Chen, and H. Zhu. 2019. “Automatic characterization of rock mass discontinuities using 3D point clouds.” Eng. Geol. 259: 105131. https://doi.org/10.1016/j.enggeo.2019.05.008.
Li, X., J. Chen, and H. Zhu. 2016. “A new method for automated discontinuity trace mapping on rock mass 3D surface model.” Comput. Geosci. 89: 118–131. https://doi.org/10.1016/j.cageo.2015.12.010.
Linder, W. 2016. Digital photogrammetry A practical course. Berlin: Springer.
Mah, J., C. Samson, and S. D. McKinnon. 2011. “3D laser imaging for joint orientation analysis.” Int. J. Rock Mech. Min. Sci. 48 (6): 932–941. https://doi.org/10.1016/j.ijrmms.2011.04.010.
Mah, J., C. Samson, S. D. McKinnon, and D. Thibodeau. 2013. “3D laser imaging for surface roughness analysis.” Int. J. Rock Mech. Min. Sci. 58: 111–117. https://doi.org/10.1016/j.ijrmms.2012.08.001.
Marinos, P., and E. Hoek. 2000. “GSI—A geologically friendly tool for rock mass strength estimation.” In GeoEngineering 2000 Conf., 1422–1442. Boca Raton, FL: CRC Press. Accessed October 12, 2020. https://www.rocscience.com/learning/hoeks-corner/publications.
Marquardt, D. W. 1963. “An algorithm for least-squares estimation of nonlinear parameters.” J. Soc. Ind. Appl. Math. 11 (2): 431–441. https://doi.org/10.1137/0111030.
MathWorks. 2020. “MATLAB Runtime—Run compiled MATLAB applications or components without installing MATLAB.” Accessed March 16, 2021. https://www.mathworks.com/products/compiler/matlab-runtime.html.
McCulloch, W. S., and W. Pitts. 1943. “A logical calculus of the ideas immanent in nervous activity.” Bull. Math. Biophys. 5 (4): 115–133. https://doi.org/10.1007/BF02478259.
Micheletti, N., J. H. Chandler, and S. N. Lane. 2015. “Structure from motion (SfM) photogrammetry.” Chap. 2 in Geomorphological techniques (online edition), Sec. 2.2, edited by L. E. Clarke and J. M. Nield, 1–12. London: British Society for Geomorphology.
Mikhail, E. M., J. S. Bethel, and J. C. McGlone. 2001. Introduction to modern photogrammetry. New York: Wiley.
Millonas, M. M. 1994. “Swarms, phase transitions, and collective intelligence”. In Proc., Artificial Life Conf. III, edited by C. G. Langton. 417–445. Santa Fe, New Mexico: Addison Wesley.
Monte, J. M. 2004. “Rock mass characterization using laser scanning and digital imaging data collection techniques.” M.Sc. thesis, Dept. of Mining and Geological Engineering, Univ. of Arizona.
Mosaad, M. A. 1978. “The estimation of fractures and slope stability of rock faces using analytical photogrammetry.” Photogrammetria 34 (3): 89–99. https://doi.org/10.1016/0031-8663(78)90002-9.
Nefeslioglu, H. A., C. Gokceoglu, and H. Sonmez. 2006. “Indirect determination of weighted joint density (wJd) by empirical and fuzzy models: Supren (Eskisehir, Turkey) marbles.” Eng. Geol. 85 (3–4): 251–269. https://doi.org/10.1016/j.enggeo.2006.02.004.
Olson, L., C. Samson, and S. D. McKinnon. 2015. “3-D laser imaging of drill core for fracture detection and Rock Quality Designation.” Int. J. Rock Mech. Min. Sci. 73: 156–164. https://doi.org/10.1016/j.ijrmms.2014.11.004.
Palmström, A. 1995. “RMi—A for rock mass characterization system for rock engineering purposes.” Ph.D. thesis, Dept. of Geology, Univ. of Oslo.
Post, R. M., J. M. Kemeny, and R. Murphy. 2001. “Image processing for automatic extraction of rock joint orientation data from digital images.” In Proc., 38th US Rock Mechanics Symp., edited by D. Elsworth, J. Tinucci, and K. Heasley, 877–884. Washington, DC: American Rock Mechanics Association (ARMA).
Reid, T. R. 2000. “Interactive discontinuity trace detection in digital images of rock mass exposures.” Mem. Fac. Eng. Kumamoto Univ. 45 (2): 1–14.
Reid, T. R., and J. P. Harrison. 2000. “A semi-automated methodology for discontinuity trace detection in digital images of rock mass exposures.” Int. J. Rock Mech. Min. Sci. 37 (7): 1073–1089. https://doi.org/10.1016/S1365-1609(00)00041-1.
Rezende, S. O. 2003. Sistemas inteligentes: Fundamentos e aplicações. [In Portuguese.] Barueri, Brazil: Manole Ltda.
Riquelme, A. J., A. Abellán, and R. Tomás. 2015. “Discontinuity spacing analysis in rock masses using 3D point clouds.” Eng. Geol. 195: 185–195. https://doi.org/10.1016/j.enggeo.2015.06.009.
Riquelme, A. J., A. Abellán, R. Tomás, and M. Jaboyedoff. 2014. “A new approach for semi-automatic rock mass joints recognition from 3D point clouds.” Comput. Geosci. 68: 38–52. https://doi.org/10.1016/j.cageo.2014.03.014.
Rosenblatt, F. 1958. “The perceptron: A probabilistic model for information storage and organization in the brain.” Psychol. Rev. 65 (6): 386–408. https://doi.org/10.1037/h0042519.
Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. “Learning internal representations by error propagation.” In Parallel distributed processing: Explorations in the microstructures of cognition, edited by D. E. Rumelhart and J. L. McClelland, 318–362. Cambridge, UK: MIT Press.
Salvini, R., C. Vanneschi, J. S. Coggan, and G. Mastrorocco. 2020. “Evaluation of the use of UAV photogrammetry for rock discontinuity roughness characterization.” Rock Mech. Rock Eng. 53 (8): 3699–3720. https://doi.org/10.1007/s00603-020-02130-2.
Serajian, V., and H. Salari-Rad. 2008. “The application of digital image processing to estimate the joint volumetric distribution.” In ISRM Int. Symp.—5th Asian Rock Mechanics Symp., 1499–1506. Tehran, Iran: ISRM.
Singh, B., and R. K. Goel. 2011. “Evaluation of critical rock parameters.” Chap. 26 in Engineering rock mass classification: Geological strength index, edited by B. Singh, 319–334. Oxford, UK: Butterworth–Heinemann.
Slob, S., B. van Knapen, R. Hack, K. Turner, and J. Kemeny. 2005. “Method for automated discontinuity analysis of rock slopes with three-dimensional laser scanning.” Transp. Res. Rec. 1913 (1): 187–194. https://doi.org/10.1177/0361198105191300118.
Sturzenegger, M., M. Yan, D. Stead, and D. Elmo. 2007. “Application and limitations of ground-based laser scanning in rock slope characterisation.” In Proc., 1st CanadianU.S. Rock Mechanics Symp., edited by E. Eberhardt, D. Stead, and T. Morrison, 29–36. Vancouver, Canada: ARMA Canada.
Thiele, S. T., L. Grose, A. Samsu, S. Micklethwaite, S. A. Vollgger, and A. R. Cruden. 2017. “Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data.” Solid Earth 8 (6): 1241–1253. https://doi.org/10.5194/se-8-1241-2017.
Tsoutrelis, C. E., G. E. Exadactylos, and A. P. Kapenis. 1990. “Study of the rock mass discontinuity system using photoanalysis.” In Mechanics of jointed and faulted rock, edited by H. P. Rossmanith, 103–112. Boca Raton, FL: CRC Press.
Umili, G., A. Ferrero, and H. H. Einstein. 2013. “A new method for automatic discontinuity traces sampling on rock mass 3D model.” Comput. Geosci. 51: 182–192. https://doi.org/10.1016/j.cageo.2012.07.026.
Vafaeipour, M., O. Rahbari, M. A. Rosen, F. Fazelpour, and P. Ansarirad. 2014. “Application of sliding window technique for prediction of wind velocity time series.” Int. J. Energy Environ. Eng. 5 (2–3): 105. https://doi.org/10.1007/s40095-014-0105-5.
Wang, W., and Y. Liang. 2015. “Rock fracture centerline extraction based on hessian matrix and steger algorithm.” KSII Trans. Internet Inf. Syst. 9 (12): 5073–5086. https://doi.org/10.3837/tiis.2015.12.018.
Wickens, E. H., and N. R. Barton. 1971. “The application of photogrammetry to the stability of excavated rock slopes.” Photogramm. Rec. 7 (37): 46–54. https://doi.org/10.1111/j.1477-9730.1971.tb01127.x.
Zeni, M. A., L. P. Peroni, and F. A. Santos. 2020a. “GSI_Classifier. V1.” GitHub. Accessed October 21, 2020. https://github.com/MariliaAbrao/GSI_Classifier_v1.
Zeni, M. A., L. P. Peroni, and F. A. Santos. 2020b. “Point cloud and traces.” Figshare. Accessed October 21, 2020. https://doi.org/10.6084/m9.figshare.13123061.
Zhang, K., W. Wu, H. Zhu, L. Zhang, X. Li, and H. Zhang. 2020. “A modified method of discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.” J. Rock Mech. Geotech. Eng. 12 (3): 571–586. https://doi.org/10.1016/j.jrmge.2019.10.006.
Zhang, Z. Q., M. W. Qing, Q. Zhang, and Z. C. Gong. 2009. “Estimation of rock mass rating system with an artificial neural network.” In Proc., 6th Int. Symp. on Neural Networks, edited by W. Yu, H. He, and N. Zhang, 963–972. Berlin: Springer.
Zhu, H., W. Wu, J. Chen, G. Ma, X. Liu, and X. Zhuang. 2016. “Integration of three dimensional discontinuous deformation analysis (DDA) with binocular photogrammetry for stability analysis of tunnels in blocky rockmass.” Tunnelling Underground Space Technol. 51: 30–40. https://doi.org/10.1016/j.tust.2015.10.012.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 12December 2021

History

Received: Oct 22, 2020
Accepted: Jul 28, 2021
Published online: Oct 14, 2021
Published in print: Dec 1, 2021
Discussion open until: Mar 14, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Dept. of Mining Engineering, Federal Univ. of Rio Grande do Sul, Bento Gonçalves Ave. 9500—Building 74, Porto Alegre, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-7446-8971. Email: [email protected]
Rodrigo de Lemos Peroni, Ph.D. [email protected]
Associate Professor, Dept. of Mining Engineering, Federal Univ. of Rio Grande do Sul, Bento Gonçalves Ave. 9500—Building 74, Porto Alegre, Brazil. Email: [email protected]
Fábio Augusto Guidotti dos Santos [email protected]
Contributor, Eng., Academic Dept. of Electrical, Federal Technological Univ. of Paraná, Sete de Setembro Ave. 3165, Curitiba, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Why Engineers Should Not Attempt to Quantify GSI, Geosciences, 10.3390/geosciences12110417, 12, 11, (417), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share