Technical Papers
Mar 25, 2021

Coupled Moving Particle Simulation–Finite-Element Method Analysis of Fluid–Structure Interaction in Geodisasters

Publication: International Journal of Geomechanics
Volume 21, Issue 6

Abstract

Geodisasters associated with fluidized geomaterials, such as flow-like landslides, flow slides, and debris flows, pose a tremendous threat to communities and the environment. Protective structural measures are therefore important for disaster prevention and mitigation. However, the development of a numerical method to study fluid–structure interaction (FSI) remains a challenge. A coupled method is proposed using moving particle simulation (MPS) to simulate the large deformation of fluidized geomaterials and a finite-element method (FEM) to model the dynamic behavior of structures. A new boundary condition based on the Shepard filter method is developed for MPS to improve its efficiency. An interaction model with weak coupling schemes is used to effectively communicate information and coordinate the different time steps between the MPS and FEM approaches. The effectiveness and accuracy of the hybrid numerical method for FSI are verified and validated using a series of benchmark problems.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41831291, 51808401, and 41728006) and the China Postdoctoral Science Foundation (Grant Nos. 2020T130472 and 2017M620167). We thank Dr. Esther Posner for editing the English text of a draft of this manuscript.

References

Akbay, M., N. Nobles, V. Zordan, and T. Shinar. 2018. “An extended partitioned method for conservative solid–fluid coupling.” ACM Trans. Graphics 37 (4): 86. https://doi.org/10.1145/3197517.3201345.
Armanini, A. 1997. “On the dynamic impact of debris flows.” In Recent developments on debris flows, edited by A. Armanini and M. Michiue, 208–226. Dordrecht, Netherlands: Springer.
Aulisa, E., and G. Capodaglio. 2019. “Monolithic coupling of the implicit material point method with the finite element method.” Comput. Struct. 219: 1–15. https://doi.org/10.1016/j.compstruc.2019.04.006.
Banks, J. W., W. D. Henshaw, and D. W. Schwendeman. 2014. “An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids.” J. Comput. Phys. 269: 108–137. https://doi.org/10.1016/j.jcp.2014.03.006.
Bui, H. H., R. Fukagawa, K. Sako, and S. Ohno. 2008. “Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model.” Int. J. Numer. Anal. Methods Geomech. 32 (12): 1537–1570. https://doi.org/10.1002/nag.688.
Chen, W., and T. Qiu. 2012. “Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method.” Int. J. Geomech. 12 (2): 127–135. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000149.
Chen, Z. P., X. M. Qiu, X. Zhang, and Y. P. Lian. 2015. “Improved coupling of finite element method with material point method based on a particle-to-surface contact algorithm.” Comput. Methods Appl. Mech. Eng. 293: 1–19. https://doi.org/10.1016/j.cma.2015.04.005.
Dai, F. C., C. F. Lee, and Y. Y. Ngai. 2002. “Landslide risk assessment and management: An overview.” Eng. Geol. 64 (1): 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X.
Dai, Z., Y. Huang, H. Cheng, and Q. Xu. 2017. “SPH model for fluidstructure interaction and its application to debris flow impact estimation.” Landslides 14 (3): 917–928. https://doi.org/10.1007/s10346-016-0777-4.
Farhat, C., and M. Lesoinne. 2000. “Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems.” Comput. Methods Appl. Mech. Eng. 182 (3–4): 499–515. https://doi.org/10.1016/S0045-7825(99)00206-6.
Gao, Y., D. Sun, Z. Zhu, and Y. Xu. 2019. “Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range.” Acta Geotech. 14 (2): 417–428. https://doi.org/10.1007/s11440-018-0662-5.
Hadush, S., A. Yashima, and R. Uzuoka. 2000. “Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis.” Comput. Geotech. 27 (3): 199–224. https://doi.org/10.1016/S0266-352X(00)00015-X.
Hashimoto, H., and D. Le Touzé. 2014. “Coupled MPS-FEM model for violent flows-structures interaction.” In Proc., 29th Workshop on Water Waves and Floating Bodies, 1–4. Osaka, Japan: Osaka University.
Huang, Y., and C. Zhu. 2014. “Simulation of flow slides in municipal solid waste dumps using a modified MPS method.” Nat. Hazards 74 (2): 491–508. https://doi.org/10.1007/s11069-014-1194-4.
Huang, Y., and C. Zhu. 2015. “Numerical analysis of tsunami–structure interaction using a modified MPS method.” Nat. Hazards 75 (3): 2847–2862. https://doi.org/10.1007/s11069-014-1464-1.
Hübl, J., J. Suda, D. Proske, and R. Kaitna. 2009. “Debris flow impact estimation.” In Proc., 11th Int. Symp. on Water Management and Hydraulic Engineering. Skopje, Macedonia: Univ. od Ss Cyril and Methodius.
Hungr, O. 1995. “A model for the runout analysis of rapid flow slides, debris flows, and avalanches.” Can. Geotech. J. 32 (4): 610–623. https://doi.org/10.1139/t95-063.
Hwang, S.-C., A. Khayyer, H. Gotoh, and J.-C. Park. 2014. “Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems.” J. Fluids Struct. 50: 497–511. https://doi.org/10.1016/j.jfluidstructs.2014.07.007.
Iaconeta, I., A. Larese, R. Rossi, and Z. Guo. 2017. “Comparison of a material point method and a Galerkin meshfree method for the simulation of cohesive-frictional materials.” Materials 10 (10): 1150. https://doi.org/10.3390/ma10101150.
Iaconeta, I., A. Larese, R. Rossi, and E. Oñate. 2019. “A stabilized mixed implicit material point method for non-linear incompressible solid mechanics.” Comput. Mech. 63 (6): 1243–1260. https://doi.org/10.1007/s00466-018-1647-9.
Iverson, R. M. 2015. “Scaling and design of landslide and debris-flow experiments.” Geomorphology 244: 9–20. https://doi.org/10.1016/j.geomorph.2015.02.033.
Jung, S. J., J. C. Park, B. H. Lee, M. C. Ryu, and Y. S. Kim. 2008. “Numerical simulation of two-dimensional floating body motion in waves using particle method.” [In Korean.] J. Ocean Eng. Technol. 22 (2): 20–27.
Kang, C., and D. Chan. 2017. “Modeling of entrainment in debris flow analysis for Dry granular material.” Int. J. Geomech. 17 (10): 04017087. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000981.
Kondo, M., and S. Koshizuka. 2011. “Improvement of stability in moving particle semi-implicit method.” Int. J. Numer. Methods Fluids 65 (6): 638–654. https://doi.org/10.1002/fld.2207.
Koshizuka, S., and Y. Oka. 1996. “Moving-particle semi-implicit method for fragmentation of incompressible fluid.” Nucl. Sci. Eng. 123 (3): 421–434. https://doi.org/10.13182/NSE96-A24205.
Larese, A., R. Rossi, E. Oñate, and S. R. Idelsohn. 2008. “Validation of the particle finite element method (PFEM) for simulation of free surface flows.” Eng. Comput. 25: 385–425. https://doi.org/10.1108/02644400810874976.
Larese, A., R. Rossi, E. Oñate, and S. R. Idelsohn. 2012. “A coupled PFEM–Eulerian approach for the solution of porous FSI problems.” Comput. Mech. 50 (6): 805–819. https://doi.org/10.1007/s00466-012-0768-9.
Larese, A., R. Rossi, E. Oñate, MÁ Toledo, R. Morán, and H. Campos. 2015. “Numerical and experimental study of overtopping and failure of rockfill dams.” Int. J. Geomech. 15 (4): 04014060. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000345.
Leonardi, A., F. K. Wittel, M. Mendoza, R. Vetter, and H. J. Herrmann. 2016. “Particlefluidstructure interaction for debris flow impact on flexible barriers.” Comput.-Aided Civ. Infrastruct. Eng. 31 (5): 323–333. https://doi.org/10.1111/mice.12165.
Li, X., Y. Xie, and M. Gutierrez. 2018. “A soft–rigid contact model of MPM for granular flow impact on retaining structures.” Comput. Part. Mech. 5 (4): 529–537. https://doi.org/10.1007/s40571-018-0188-5.
Li, X., and J. Zhao. 2018. “A unified CFD-DEM approach for modeling of debris flow impacts on flexible barriers.” Int. J. Numer. Anal. Methods Geomech. 42: 1643–1670. https://doi.org/10.1002/nag.2806.
Lian, Y. P., X. Zhang, and Y. Liu. 2011. “Coupling of finite element method with material point method by local multi-mesh contact method.” Comput. Methods Appl. Mech. Eng. 200 (47–48): 3482–3494. https://doi.org/10.1016/j.cma.2011.07.014.
Liang, S., and Z. Chen. 2019. “SPH-FEM coupled simulation of SSI for conducting seismic analysis on a rectangular underground structure.” Bull. Earthquake Eng. 17 (1): 159–180. https://doi.org/10.1007/s10518-018-0456-z.
Liang, W., and J. Zhao. 2019. “Multiscale modeling of large deformation in geomechanics.” Int. J. Numer. Anal. Methods Geomech. 43 (5): 1080–1114. https://doi.org/10.1002/nag.2921.
Liu, M., J. Shao, and J. Chang. 2012. “On the treatment of solid boundary in smoothed particle hydrodynamics.” Sci. Chin. Technol. Sci. 55 (1): 244–254. https://doi.org/10.1007/s11431-011-4663-y.
Lu, K., W. M. Coombs, C. E. Augarde, and Z. Hu. 2020. “An implicit boundary finite element method with extension to frictional sliding boundary conditions and elasto-plastic analyses.” Comput. Methods Appl. Mech. Eng. 358: 112620. https://doi.org/10.1016/j.cma.2019.112620.
Lucy, L. B. 1977. “A numerical approach to the testing of the fission hypothesis.” Astron. J. 82: 1013–1024. https://doi.org/10.1086/112164.
Marti, J. M., S. R. Idelsohn, A. C. Limache, N. A. Calvo, and J. D’elia. 2006. “A fully coupled particle method for quasi-incompressible fluid–hypoelastic structure interactions.” Mecánica Comput. 25: 809–827.
Martin, J. C., and W. J. Moyce. 1952. “Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane.” Philos. Trans. R. Soc. London, Ser. A 244 (882): 312–324.
Mitsume, N., S. Yoshimura, K. Murotani, and T. Yamada. 2014. “MPS–FEM partitioned coupling approach for fluid–structure interaction with free surface flow.” Int. J. Comput. Methods 11 (4): 1350101. https://doi.org/10.1142/S0219876213501016.
Moriguchi, S., R. I. Borja, A. Yashima, and K. Sawada. 2009. “Estimating the impact force generated by granular flow on a rigid obstruction.” Acta Geotech. 4 (1): 57–71. https://doi.org/10.1007/s11440-009-0084-5.
Moriguchi, S., A. Yashima, K. Sawada, R. Uzuoka, and M. Ito. 2005. “Numerical simulation of flow failure of geomaterials based on fluid dynamics.” Soils Found. 45 (2): 155–165. https://doi.org/10.3208/sandf.45.2_155.
Muha, B., and S. Čanić. 2016. “Existence of a weak solution to a fluid–elastic structure interaction problem with the Navier slip boundary condition.” J. Differ. Equations 260 (12): 8550–8589. https://doi.org/10.1016/j.jde.2016.02.029.
Newmark, N. M. 1959. “A method of computation for structural dynamics.” J. Eng. Mech. Div. 85 (3): 67–94. https://doi.org/10.1061/JMCEA3.0000098.
Ng, C. W. W., C. E. Choi, G. R. Goodwin, and W. W. Cheung. 2017. “Interaction between dry granular flow and deflectors.” Landslides 14 (4): 1375–1387. https://doi.org/10.1007/s10346-016-0794-3.
Nodoushan, E. J., A. Shakibaeinia, and K. Hosseini. 2018. “A multiphase meshfree particle method for continuum-based modeling of dry and submerged granular flows.” Powder Technol. 335: 258–274. https://doi.org/10.1016/j.powtec.2018.04.071.
Nohara, S., H. Suenaga, and K. Nakamura. 2018. “Large deformation simulations of geomaterials using moving particle semi-implicit method.” J. Rock Mech. Geotech. Eng. 10 (6): 1122–1132. https://doi.org/10.1016/j.jrmge.2018.06.005.
Ouyang, C.-J., W. Zhao, S.-M. He, D.-P. Wang, S. Zhou, H.-C. An, Z.-W. Wang, and D.-X. Cheng. 2017. “Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian County, China.” J. Mountain Sci. 14 (9): 1701–1711. https://doi.org/10.1007/s11629-017-4613-7.
Papanastasiou, T. C. 1987. “Flows of materials with yield.” J. Rheol. 31: 385–404. https://doi.org/10.1122/1.549926.
Pastor, M., B. Haddad, G. Sorbino, S. Cuomo, and V. Drempetic. 2009. “A depth-integrated, coupled SPH model for flow-like landslides and related phenomena.” Int. J. Numer. Anal. sMethods Geomech. 33 (2): 143–172. https://doi.org/10.1002/nag.705.
Pastor, M., J. F. Merodo, M. I. Herreros, P. Mira, E. González, B. Haddad, M. Quecedo, L. Tonni, and V. Drempetic. 2008. “Mathematical, constitutive and numerical modelling of catastrophic landslides and related phenomena.” Rock Mech. Rock Eng. 41 (1): 85. https://doi.org/10.1007/s00603-007-0132-0.
Peng, C., W. Wu, H. S. Yu, and C. Wang. 2015. “A SPH approach for large deformation analysis with hypoplastic constitutive model.” Acta Geotech. 10 (6): 703–717. https://doi.org/10.1007/s11440-015-0399-3.
Rafiee, A., and K. P. Thiagarajan. 2009. “An SPH projection method for simulating fluid-hypoelastic structure interaction.” Comput. Methods Appl. Mech. Eng. 198 (33–36): 2785–2795. https://doi.org/10.1016/j.cma.2009.04.001.
Salazar, F., J. Irazábal, A. Larese, and E. Oñate. 2016. “Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow model.” Int. J. Numer. Anal. Methods Geomech. 40 (6): 809–826. https://doi.org/10.1002/nag.2428.
Shan, T., and J. Zhao. 2014. “A coupled CFD-DEM analysis of granular flow impacting on a water reservoir.” Acta Mech. 225 (8): 2449–2470. https://doi.org/10.1007/s00707-014-1119-z.
Smith, I., and D. V. Griffiths. 1998. Programming the finite element method. 3rd ed. New York: Wiley.
Soga, K., E. Alonso, A. Yerro, K. Kumar, and S. Bandara. 2016. “Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method.” Géotechnique 66 (3): 248–273. https://doi.org/10.1680/jgeot.15.LM.005.
Sulsky, D., Z. Chen, and H. L. Schreyer. 1994. “A particle method for history-dependent materials.” Comput. Methods Appl. Mech. Eng. 118 (1–2): 179–196. https://doi.org/10.1016/0045-7825(94)90112-0.
Swegle, J. W. 2000. Conservation of momentum and tensile instability in particle method. Sandia Rep. No. SAND2000-1223. Albuquerque, NM: Sandia National Laboratories.
Walhorn, E., A. Kölke, B. Hübner, and D. Dinkler. 2005. “Fluid–structure coupling within a monolithic model involving free surface flows.” Comput. Struct. 83 (25–26): 2100–2111. https://doi.org/10.1016/j.compstruc.2005.03.010.
Wang, L., A. Khayyer, H. Gotoh, Q. Jiang, and C. Zhang. 2019. “Enhancement of pressure calculation in projection-based particle methods by incorporation of background mesh scheme.” Appl. Ocean Res. 86: 320–339. https://doi.org/10.1016/j.apor.2019.01.017.
Wendeler, C., A. Volkwein, A. Roth, M. Denk, and S. Wartmann. 2007. “Field measurements and numerical modelling of flexible debris flow barriers.” In Proc., Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, 681–687. Rotterdam, Netherlands: Millpress.
Yang, Q., V. Jones, and L. McCue. 2012. “Free-surface flow interactions with deformable structures using an SPH–FEM model.” Ocean En. 55: 136–147. https://doi.org/10.1016/j.oceaneng.2012.06.031.
Yin, Y., B. Li, W. Wang, L. Zhan, Q. Xue, Y. Gao, N. Zhang, H. Chen, T. Liu, and A. Li. 2016. “Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization.” Engineering 2 (2): 230–249. https://doi.org/10.1016/J.ENG.2016.02.005.
Zhang, W., W. Yuan, and B. Dai. 2018. “Smoothed particle finite-element method for large-deformation problems in geomechanics.” Int. J. Geomech. 18 (4): 04018010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001079.
Zhao, J., and T. Shan. 2013. “Numerical modeling of fluid–particle interaction in granular media.” Theor. Appl. Mech. Lett. 3 (2): 021007. https://doi.org/10.1063/2.1302107.
Zhu, C., Y. Huang, and L. T. Zhan. 2018. “SPH-based simulation of flow process of a landslide at Hongao landfill in China.” Nat. Hazards 93 (3): 1113–1126. https://doi.org/10.1007/s11069-018-3342-8.
Zhu, H., and M. F. Randolph. 2010. “Large deformation finite-element analysis of submarine landslide interaction with embedded pipelines.” Int. J. Geomech. 10 (4): 145–152. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000054.
Zorrilla, R., A. Larese, and R. Rossi. 2019. “A modified finite element formulation for the imposition of the slip boundary condition over embedded volumeless geometries.” Comput. Methods Appl. Mech. Eng. 353: 123–157. https://doi.org/10.1016/j.cma.2019.05.007.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 6June 2021

History

Received: Apr 25, 2019
Accepted: Jan 19, 2021
Published online: Mar 25, 2021
Published in print: Jun 1, 2021
Discussion open until: Aug 25, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Chongqiang Zhu [email protected]
Postdoctoral Fellow, Dept. of Geotechnical Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Professor, Dept. of Geotechnical Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Professor, Dept. of Geotechnical Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, China (corresponding author). ORCID: https://orcid.org/0000-0002-9935-7717. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share