Technical Papers
Mar 5, 2021

Experimental Investigation of the Dynamic Characteristics of Treated Silt Using Lignin: Case Study of Yellow River Flood Basin

Publication: International Journal of Geomechanics
Volume 21, Issue 5

Abstract

Silt is widely distributed in North China Plain, especially in the Yellow River flood basin. Unfortunately, untreated silt cannot be directly used as a subgrade filler. Therefore, it is of great practical significance to explore the reinforcement of silt in the Yellow River flood basin. To solve this problem, the dynamic characteristics of silt added with different proportions of lignin were studied. The correlation among lignin content, curing time, dynamic shear modulus, and damping ratio of the improved soil was tested. The results showed that the dynamic strength and shear modulus can be effectively improved by adding lignin. The optimal lignin content for the dynamic strength and shear modulus was 5%. To understand the microscopic mechanism of lignin-treated silt, scanning electron microscopy (SEM) was performed on lignin samples. The SEM results showed that with an increase in lignin content, a certain amount of cementitious materials was formed in the soil. These cementitious materials wrap up the soil particles and connect the fine soil particles to form larger aggregates. The research results can provide a reference to further improve the physical and mechanical properties of the silt in the Yellow River flood basin, and this study is instructive.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 51508163), Key Scientific and Technological Projects of Henan Province (Grant No. 192102310226), and the Training Program for Young Scholar in Colleges and Universities of Henan Province (Grant No. 2019GGJS041).

References

Arulrajah, A., A. Mohammadinia, I. Phummiphan, S. Horpibulsuk, and W. Samingthong. 2016. “Stabilization of recycled demolition aggregates by geopolymers comprising calcium carbide residue, fly ash and slag precursors.” Constr. Build. Mater. 114: 864–873. https://doi.org/110.1016/j.conbuildmat.2016.03.150.
Arulrajah, A., E. Yaghoubi, Y. C. Wong, and S. Horpibulsuk. 2017. “Recycled plastic granules and demolition wastes as construction materials: Resilient moduli and strength characteristics.” Constr. Build. Mater. 147: 639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.178.
Bo, M. W., A. Arulrajah, S. Horpibulsuk, and M. Leong. 2015. “Quality management of prefabricated vertical drain materials in mega land reclamation projects: A case study.” Soils Found. 55 (4): 895–905. https://doi.org/10.1016/j.sandf.2015.06.019.
Boardman, D. I., S. Glendinning, and C. D. F. Rogers. 2001. “Development of stabilisation and solidification in lime–clay mixes.” Géotechnique 51 (6): 533–543. https://doi.org/10.1680/geot.51.6.533.40460.
Bowers, B. F., J. L. Daniels, and J. B. Anderson. 2014. “Field considerations for calcium chloride modification of soil-cement.” J. Mater. Civ. Eng. 26 (1): 65–70. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000780.
Cai, G., Z. Tao, S. Y. Liu, J. H. Li, and D. B. Jie. 2016. “Stabilization mechanism and effect evaluation of stabilized silt with lignin based on laboratory data.” Mar. Georesour. Geotechnol. 34 (4): 331–340. https://doi.org/10.1080/1064119X.2014.966217.
Ceylan, H., S. Kim, and K. Gopalakrishnan. 2012. “Sustainable utilization of bio-fuel co-product in roadbed stabilization.” Sustainable Bioenergy Bioprod. 62: 117–129. https://doi.org/117-129.10.1007/978-1-4471-2324-8-7.
Chang, I., J. Im, A. K. Prasidhi, and G. C. Cho. 2015. “Effects of Xanthan gum biopolymer on soil strengthening.” Constr. Build. Mater. 74: 65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
Chen, Q., B. Indraratna, J. Carter, and C. Rujikiatkamjorn. 2014. “A theoretical and experimental study on the behaviour of lignosulfonate-treated sandy silt.” Comput. Geotech. 61: 316–327. https://doi.org/10.1016/j.compgeo.2014.06.010.
Disfani, M. M., H. H. Tsang, A. Arulrajah, and E. Yaghoubi. 2017. “Shear and compression characteristics of recycled glass-tire mixtures.” J. Mater. Civ. Eng. 29 (6): 06017003. https://doi.org/10. 1061/(ASCE)MT.1943-5533.0001857.
Du, Y. J., N. J. Jiang, S. Y. Liu, S. Horpibulsuk, and A. Arulrajah. 2016. “Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue.” Soils Found. 56 (2): 301–314. https://doi.org/301-314. 10.1016/j.sandf.2016.02.012.
Dutta, S., and J. N. Mandal. 2016. “Numerical analyses on cellular mattress–reinforced fly ash beds overlying soft clay.” Int. J. Geomech. 17 (4): 04016095. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000772.
Ebrahimi, A., T. B. Edil, and Y. H. Son. 2012. “Effectiveness of cement kiln dust in stabilizing recycled base materials.” J. Mater. Civ. Eng. 24 (8): 1059–1066. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000472.
Gao, H. M., Y. Q. Shen, Z. H. Wang, and G. X. Chen. 2017. “Dynamic modulus and damping ratio characteristics of EPS composite soil.” Chin. J. Geotech. Eng. 39 (2): 279–286. https://doi.org/10.11779/CJGE201702011.
Glendinning, S., C. J. F. P. Jones, and R. C. Pugh. 2005. “Reinforced soil using cohesive fill and electrokinetic geosynthetics.” Int. J. Geomech. 5 (2): 138–146. https://doi.org/1061/(ASCE)1532-3641(2005)5:2(138).
Heidaripanah, A., M. Nazemi, and F. Soltani. 2016. “Prediction of resilient modulus of lime-treated subgrade soil using different kernels of support vector machine.” Int. J. Geomech. 17 (2): 06016020, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000723.
Horpibulsuk, S., C. Phetchuay, A. Chinkulkijniwat, and A. Cholaphatsorn. 2013. “Strength development in silty clay stabilized with calcium carbide residue and fly ash.” Soils Found. 53 (4): 477–486. https://doi.org/10.1016/j.sandf.2013.06.001.
Hossain, M. A., and J. H. Yin. 2014. “Behavior of a pressure-grouted soil cement interface in direct shear tests.” Int. J. Geomech. 14 (1): 207–212. https://doi.org/101-109.10.1061/(ASCE)GM.1943-5622.0000301.
Hoy, M., S. Horpibulsuk, R. Rachan, A. Chinkulkijniwat, and A. Arulrajah. 2016. “Recycled asphalt pavement—Fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations.” Sci. Total Environ. 573: 19–26. https://doi.org/10.1016/j.scitotenv.2016.08.078.
Huang, Y., Y. J. Bao, M. Zhang, C. Liu, and P. Lu. 2015. “Analysis of the mechanism of seabed liquefaction induced by waves and related seabed protection.” Nat. Hazards 79 (2): 1399–1408. https://doi.org/10.1007/s11069-015-1897-1.
Indraratna, B., R. Athukorala, and J. Vinod. 2013. “Estimating the rate of erosion of a silty sand treated with lignosulfonate.” J. Geotech. Geoenviron. Eng. 139 (5): 701–714. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000766.
Indraratna, B., T. Muttuvel, H. Khabbaz, and R. Armstrong. 2008. “Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion.” J. Geotech. Geoenviron. Eng. 134 (6): 837–844. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(837).
Jiang, N. J., Y. J. Du, S. Liu, M. L. Wei, S. Horpibulsuk, and A. Arulrajah. 2015. “Multi-scale laboratory evaluation of the physical, mechanical and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue.” Can. Geotech. J. 53 (3): 373–383. https://doi.org/10.1139/cgj-2015-0245.
Kang, X., L. Ge, and W. C. Liao. 2015. “Cement hydration-based micromechanics modeling of the time-dependent small-strain stiffness of fly ash-stabilized soils.” Int. J. Geomech. 16 (3): 04015071. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000552.
Kim, S., K. Gopalakrishnan, and H. Ceylan. 2012. “Moisture susceptibility of subgrade soils stabilized by lignin-based renewable energy coproduct.” J. Transp. Eng. 138 (11): 1283–1290. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000097.
Kua, T. A., A. Arulrajah, A. Mohammadinia, S. Horpibulsuk, and M. Mirzababaei. 2017. “Stiffness and deformation properties of spent coffee grounds based geopolymers.” Constr. Build. Mater. 138: 79–87. https://doi.org/10.1016/j.conbuildmat.2017.01.082.
Latifi, N., A. S. A. Rashid, A. Marto, and M. M. Tahir. 2016. “Effect of magnesium chloride solution on the physico-chemical characteristics of tropical peat.” Environ. Earth Sci. 75 (3): 1–9. https://doi.org/10.1007/s12665-015-4788-6.
Liu, T., L. Zhou, and X. G. Chen. 2018. “Study on the liquefaction properties of silt at Yellow River Delta.” J. Ocean Univ. 17 (3): 1–9. https://doi.org/1382-1390.10.1007/s11802-018-3677-5.
Liu, X., M. Zhang, H. Zhang, Y. Jia, C. Zhu, and H. Shan. 2017. “Physical and mechanical properties of loess discharged from the Yellow River into the Bohai Sea, China.” Eng. Geol. 227: 4–11. https://doi.org/10.1016/j.enggeo.2017.04.019.
Luan, M., P. Qu, D.-S. Jeng, Y. Guo, and Q. Yang. 2008. “Dynamic response of a porous seabed-pipeline interaction under wave loading: Soil–pipeline contact effects and inertial effects.” Comput. Geotech. 35 (2): 173–186. https://doi.org/10.1016/j.compgeo.2007.05.004.
Maher, M. H., and R. D. Woods. 1990. “Dynamic response of sand reinforced with randomly distributed fibers.” J. Geotech. Eng. 116 (7): 1116–1131. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:7(1116).
Meo, S. A. 2004. “Health hazards of cement dust.” Saudi Med. J. 25 (9): 1153. https://doi.org/1153–1159.10.1016/S0248-8663(04)80002-X.
Mohammadinia, A., A. Arulrajah, J. Sanjayan, M. M. Disfani, M. W. Bo, and S. Darmawan. 2016. “Stabilization of demolition materials for pavement base/subbase applications using fly ash and slag geopolymers: Laboratory investigation.” J. Mater. Civ. Eng. 28 (7): 04016033. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001526.
Neramitkornburi, A., S. Horpibulsuk, S. L. Shen, A. Arulrajah, and M. M. Disfani. 2015. “Engineering properties of lightweight cellular cemented clay−fly ash material.” Soils Found. 55 (2): 471–483. https://doi.org/10.1016/j.sandf.2015.02.020.
Pratson, L. F., J. Imran, E. W. H. Hutton, G. Parker, and J. P. M. Syvitski. 2001. “BANGID: A one-dimensional, Lagrangian model of subaqueous turbid surges.” Comput. Geosci. 27 (6): 701–716. https://doi.org/10.1016/S0098-3004(00)00123-0.
Puppala, A. J., T. Manosuthikij, and B. C. S. Chittoori. 2013. “Swell and shrinkage characterizations of unsaturated expansive clays from Texas.” Eng. Geol. 164: 187–194. https://doi.org/10.1016/j.enggeo.2013.07.001.
Qi, S. Z., and H. L. Liu. 2017. “Natural and anthropogenic hazards in the Yellow River Delta, China.” Nat. Hazards 85 (3): 1907–1911. https://doi.org/10.1007/s11069-016-2638-9.
Rollings, R. S., J. P. Burkes, and M. P. Rollings. 1999. “Sulfate attack on cement-stabilized sand.” J. Geotech. Geoenviron. Eng. 125 (5): 364–372. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:5(364).
Santoni, R. L., J. S. Tingle, and M. Nieves. 2005. “Accelerated strength improvement of silty sand with nontraditional additives.” Transp. Res. Rec. 1936 (1): 34–42. https://doi.org/10.1177/0361198105193600105.
Santoni, R. L., J. S. Tingle, and S. L. Webster. 2002. “Stabilization of silty sand with nontraditional additives.” Transp. Res. Rec. 1787 (1): 61–70. https://doi.org/10.3141/1787-07.
Sariosseiri, F., and B. Muhunthan. 2009. “Effect of cement treatment on geotechnical properties of some Washington state soils.” Eng. Geol. 104 (1–2): 119–125. https://doi.org/10.1016/j.enggeo.2008.09.003.
Tingle, J., and R. Santoni. 2003. “Stabilization of clay soils with nontraditional additives.” Transp. Res. Rec. 1819 (1): 72–84. https://doi.org/10.3141/1819b-10.
Tiwari, B., B. Ajmera, S. Moubayed, A. Lemmon, and K. Styler. 2012. “Soil modification with shredded rubber tires.” GeoCongress 225: 3701–3708. https://doi.org/10.1061/9780784412121.379.
Wang, H., and H. J. Liu. 2016. “Evaluation of storm wave-induced silty seabed instability and geo-hazards: A case study in the Yellow River Delta.” Appl. Ocean Res. 58: 135–145. https://doi.org/10.1016/j.apor.2016.03.013.
Wang, M. M., Q. Lu, S. L. Guo, M. Gao, and Z. T. Shen. 2018. “Dynamic behavior of soil with fiber and cement under cyclic loading.” Rock Soil Mech. 39 (5): 1753–1760. https://doi.org/10.16285/j.rsm.2017.0267.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019a. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., A. W. Stuedlein, J. Y. Ran, T. M. Evans, L. Cheng, H. L. Liu, L. A. van Paassen, and J. Chu. 2019c. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., Y. Wang, C. S. Desai, X. Jiang, and H. Liu. 2019b. “Strength and deformation responses of biocemented sands using a temperature-controlled method.” Int. J. Geomech. 19 (11): 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497.
Yang, X., Y. G. Jia, H. J. Liu, and H. G. Shan. 2009. “Characteristics and causes of the preconsolidation stress of soils in the Yellow River Delta.” J. Ocean Univ. Chin. 8 (3): 215–222. https://doi.org/10.1007/s11802-009-0215-5.
Zhang, M., Y. Huang, and Y. Bao. 2016. “The mechanism of shallow submarine landslides triggered by storm surge.” Nat. Hazards 81 (2): 1373–1383. https://doi.org/10.1007/s11069-015-2112-0.
Zhang, T., S. Liu, G. Cai, and A. J. Puppala. 2015. “Experimental investigation of thermal and mechanical properties of lignin treated silt.” Eng. Geol. 196: 1–11. https://doi.org/10.1016/j.enggeo.2015.07.003.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 5May 2021

History

Received: Jul 10, 2020
Accepted: Dec 29, 2020
Published online: Mar 5, 2021
Published in print: May 1, 2021
Discussion open until: Aug 5, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Civil Engineering and Architecture, Henan Univ., Kaifeng 475004, China; Professor, Henan Provincial Research Center of Engineering on Intelligent Construction of Rail Transit, Henan Univ., Kaifeng 475004, China (corresponding author). ORCID: https://orcid.org/0000-0003-4856-8837. Email: [email protected]
M.S. Candidate, School of Civil Engineering and Architecture, Henan Univ., Kaifeng 475004, China. Email: [email protected]
Xiaoju Wang [email protected]
M.S. Candidate, School of Civil Engineering and Architecture, Henan Univ., Kaifeng 475004, China. Email: [email protected]
Hanliang Bian, Ph.D. [email protected]
School of Civil Engineering and Architecture, Henan Univ., Kaifeng 475004, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share