Abstract

The contractive behavior and flow failure in saturated binary granular soils have been studied by many as functions of their physical properties [gradation, mean particle size, fines content (FC), and packing quality] and mean effective stress, stress history, and cyclic stress amplitude. Nevertheless, little is known on the interplays between frame elements and fines in loose saturated geocomposite mixtures and also between virgin and added frame elements under cyclic loading. That knowledge shortfall has lent uncertainty to flow potential and compressibility predictions for saturated sands in their natural and engineered forms. In this paper, 36 cyclic undrained triaxial-compression tests were performed to investigate the cyclic behavior and properties of saturated loose sand–silt–tire-derived ground rubber (GR) mixtures and to determine the effects of the GR and almost nonplastic fines on the rate of pore-water pressure buildup. The complex interplay among the angular sand, fines (silt) and GR solids, and pore spaces of varied shape, size, and rigidity are discussed at a microscale and invoking the framework of two conceptual models, small silt and large silt. The control of FC on liquefaction resistance was found to be dependent on the sand and GR particle sizes. The relatively greater elasticity of GR than sand lends a damping effect to frame elements and further improves the liquefaction resistance through relaxation of skeletal stresses and reduces the chance of contact destruction for sand particles.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The work presented in this paper was not supported by any funding body.

References

Ahmed, I. 1993. “Laboratory study on properties of rubber-soils.” Joint Highway Research Project. Publication FHWA/IN/JHRP-93/04. West Lafayette, Indiana: Indiana Department of Transportation and Purdue University. https://doi.org/10.5703/1288284314210.
Albano, C., N. Camacho, J. Reyes, J. L. Feliu, and M. Hernández. 2005. “Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing.” Compos. Struct. 71 (3–4): 439–446. https://doi.org/10.1016/j.compstruct.2005.09.037.
Alonso, E. E., J. M. Pereira, J. Vaunat, and S. Olivella. 2010. “A microstructurally based effective stress for unsaturated soils.” Géotechnique 60 (12): 913–925. https://doi.org/10.1680/geot.8.P.002.
Al-Rkaby, A. H. J. 2019. “Strength and deformation of sand–tire rubber mixtures (STRM): An experimental study.” Stud. Geotech. Mech. 41 (2): 74–80. https://doi.org/10.2478/sgem-2019-0007.
Assadi-Langroudi, A., I. Jefferson, K. O’Hara-Dhand, and I. Smalley. 2014. “Micromechanics of quartz sand breakage in a fractal context.” Geomorphology 211: 1–10. https://doi.org/10.1016/j.geomorph.2013.12.016.
ASTM. 1999a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253. West Conshohocken, PA: ASTM.
ASTM. 1999b. Standard test method for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254. West Conshohocken, PA: ASTM.
ASTM. 2000. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard practice of use of scrap tires in civil engineering applications. ASTM D6270-80. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2017d. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913/D6913M. West Conshohocken, PA: ASTM.
Bagherieh, A. R., N. Khalili, G. Habibagahi, and A. Ghahramani. 2009. “Drying response and effective stress in a double porosity aggregated soil.” Eng. Geol. 105 (1–2): 44–50. https://doi.org/10.1016/j.enggeo.2008.12.009.
Bahadori, H., and R. Farzalizadeh. 2018. “Dynamic properties of saturated sands mixed with tyre powders and tyre shreds.” Int. J. Civ. Eng. 16 (4): 395–408. https://doi.org/10.1007/s40999-016-0136-9.
Bahadori, H., and A. Khalili. 2019. “Effect of loading frequency on the dynamic properties of sand–tire mixture.” Acta Geodyn. Geomater. 16 (3): 269–280. https://doi.org/10.13168/AGG.2019.0023.
Bahadori, H., and S. Manafi. 2015. “Effect of tyre chips on dynamic properties of saturated sands.” Int. J. Phys. Model. Geotech. 15 (3): 116–128. https://doi.org/10.1680/jphmg.13.00014.
Belkhatir, M., A. Arab, T. Schanz, H. Missoum, and N. Della. 2011. “Laboratory study on the liquefaction resistance of sand–silt mixtures: Effect of grading characteristics.” Granular Matter 13 (5): 599–609. https://doi.org/10.1007/s10035-011-0269-0.
Bicocchi, G., V. Tofani, M. D’Ambrosio, C. Tacconi-Stefanelli, P. Vannocci, N. Casagli, G. Lavorini, M. Trevisani, and F. Catani. 2019. “Geotechnical and hydrological characterization of hillslope deposits for regional landslide prediction modeling.” Bull. Eng. Geol. Environ. 78 (7): 4875–4891. https://doi.org/10.1007/s10064-018-01449-z.
Bouckovalas, G. D., K. I. Andrianopoulos, and A. G. Papadimitriou. 2003. “A critical state interpretation for the cyclic liquefaction resistance of silty sands.” Soil Dyn. Earthquake Eng. 23 (2): 115–125. https://doi.org/10.1016/S0267-7261(02)00156-2.
Cabalar, A. F., and Z. Karabash. 2015. “California bearing ratio of a sub-base material modified with tire buffings and cement addition.” J. Test. Eval. 43 (6): 1279–1287. https://doi.org/10.1520/JTE20130070.
Cheng, K., J. Zhang, Y. Miao, B. Ruan, and T. Peng. 2019. “The effect of plastic fines on the shear modulus and damping ratio of silty sands.” Bull. Eng. Geol. Environ. 78 (8): 5865–5876. https://doi.org/10.1007/s10064-019-01522-1.
Cho, G. C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Choobbasti, A. J., A. Ghalandarzadeh, and M. Esmaeili. 2014. “Experimental study of the grading characteristic effect on the liquefaction resistance of various graded sands and gravelly sands.” Arabian J. Geosci. 7 (7): 2739–2748. https://doi.org/10.1007/s12517-013-0886-5.
De Larrard, F. 1999. Concrete Mixture Proportioning: A Scientific Approach. London, UK: E & FN Spon.
Edil, T. B., and P. J. Bosscher. 1994. “Engineering properties of tire chips and soil mixtures.” Geotech. Test. J. 17 (4): 453–464. https://doi.org/10.1520/GTJ10306J.
Eldin, N. N., and A. B. Senouci. 1993. “Rubber-tire particles as concrete aggregate.” J. Mater. Civ. Eng. 5 (4): 478–496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478).
El Mountassir, G., M. Sánchez, E. Romero, and R. A. A. Soemitro. 2011. “Behaviour of compacted silt used to construct flood embankment.” Proc. Inst. Civ. Engi. Geotech. Eng. 164 (3): 195–210. https://doi.org/10.1680/geng.10.00055.
El Takch, A., A. Sadrekarimi, and H. El Naggar. 2016. “Cyclic resistance and liquefaction behavior of silt and sandy silt soils.” Soil Dyn. Earthquake Eng. 83: 98–109. https://doi.org/10.1016/j.soildyn.2016.01.004.
Feng, Z. Y., and K. G. Sutter. 2000. “Dynamic properties of granulated rubber/sand mixtures.” Geotech. Test. J. 23 (3): 338–344. https://doi.org/10.1520/GTJ11055J.
Foose, G. J., C. H. Benson, and P. J. Bosscher. 1996. “Sand reinforced with shredded waste tires.” J. Geotech. Eng. 122 (9): 760–767. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(760).
Ghadr, S., and A. Assadi-Langroudi. 2018. “Structure-based hydro-mechanical properties of sand–bentonite composites.” Eng. Geol. 235: 53–63. https://doi.org/10.1016/j.enggeo.2018.02.002.
Ghadr, S., S. Mirsalehi, and A. Assadi-Langroudi. 2019. “Compacted expansive elastic silt and tyre powder waste.” Geomech. Eng. 18 (5): 535–543. https://doi.org/10.12989/gae.2019.18.5.535.
Ghazavi, M., and M. A. Sakhi. 2005. “Influence of optimized tire shreds on shear strength parameters of sand.” Int. J. Geomech. 5 (1): 58–65. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:1(58).
Ghazavi, R., Z. Thomas, Y. Hamon, and P. Merot. 2011. “Soil water movement under a bottomland hedgerow during contrasting meteorological conditions.” Hydrol. Processes 25 (9): 1431–1442. https://doi.org/10.1002/hyp.7909.
Guo, P., and X. Su. 2007. “Shear strength, interparticle locking, and dilatancy of granular materials.” Can. Geotech. J. 44 (5): 579–591. https://doi.org/10.1139/t07-010.
Hakam, A. 2016. “Laboratory liquefaction test of sand based on grain size and relative density.” J. Eng. Technol. Sci. 48 (3): 334–344. https://doi.org/10.5614/j.eng.technol.sci.2016.48.3.7.
Hazarika, H., M. Hyodo, and K. Yasuhara. 2010. “Investigation of tire chips-sand mixtures as preventive measure against liquefaction.” In Ground Improvement and Geosynthetics, part of GeoShanghai 2010, edited by A. J. Puppala, J. Huang, J. Han, and L. R. Hoyos, 338–345. Reston, VA: ASCE.
Hazarika, H., and K. Yasuhara. 2008. “Tire derived recycle material as earthquake resistant geosynthetic.” Jioshinsetikkusu Rombunshu (Geosynth. Eng. J.) 23: 83–88. https://doi.org/10.5030/jcigsjournal.23.83.
Humphrey, D. N., T. C. Sandford, M. M. Cribbs, and W. P. Manion. 1993. “Shear strength and compressibility of tire chips for use as retaining wall backfill.” Transp. Res. Rec. 1422: 29–35.
Hyodo, M., S. Yamada, R. Orense, M. Okamoto, and H. Hazarika. 2007. “Undrained cyclic shear properties of tire chip–sand mixtures.” In Proc., Int. Workshop on Scrap Tire Derived Geomaterials—Opportunities and Challenges, edited by H. Hazarika and K. Yasuhara, 187–196. London, UK: CRC Press.
Ishihara, K., M. Sodekawa, and Y. Tanaka. 1978. “Effects of overconsolidation on liquefaction characteristics of sands containing fines.” In Dynamic geotechnical testing, edited by M. Silver and D. Tiedemann, 246–264. West Conshohocken, PA: ASTM.
Kang, X., L. Ge, K. T. Chang, and A. O. L. Kwok. 2016. “Strain-controlled cyclic simple shear tests on sand with radial strain measurements.” J. Mater. Civ. Eng. 28 (4): 04015169. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001458.
Karim, M. E., and M. J. Alam. 2014. “Effect of non-plastic silt content on the liquefaction behavior of sand–silt mixture.” Soil Dyn. Earthquake Eng. 65: 142–150. https://doi.org/10.1016/j.soildyn.2014.06.010.
Khalili, N., M. A. Habte, and S. Valliappan. 2005. “A bounding surface plasticity model for cyclic loading of granular soils.” Int. J. Numer. Methods Eng. 63 (14): 1939–1960. https://doi.org/10.1002/nme.1351.
Kim, K. S., Y. W. Yoon, and K. I. Song. 2018. “Pullout resistance of treadmats for reinforced soil structures.” Geomech. Eng. 14 (1): 83–90. https://doi.org/10.12989/gae.2018.14.1.083.
Kokusho, T. 1980. “Cyclic triaxial test of dynamic soil properties for wide strain range.” Soils Found. 20 (2): 45–60. https://doi.org/10.3208/sandf1972.20.2_45.
Kramer, S. L., and H. B. Seed. 1988. “Initiation of soil liquefaction under static loading conditions.” J. Geotech. Eng. 114 (4): 412–430. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:4(412).
Lade, P. V., and J. A. Yamamuro. 1997. “Effects of nonplastic fines on static liquefaction of sands.” Can. Geotech. J. 34 (6): 918–928. https://doi.org/10.1139/t97-052.
Lade, P. V., J. A. Yamamuro, and C. D. Liggio Jr. 2009. “Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand.” Geomech. Eng. 1 (1): 1–15. https://doi.org/10.12989/gae.2009.1.1.001.
Lee, J. H., R. Salgado, A. Bernal, and C. W. Lovell. 1999. “Shredded tires and rubber–sand as lightweight backfill.” J. Geotech. Geoenviron. Eng. 125 (2): 132–141. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132).
Lee, K. L., and J. A. Fitton. 1969. “Factors affecting the cyclic loading strength of soil.” In Vibration effects of earthquakes on soils and foundations, edited by E. Selig and D. Hampton, 71–95. West Conshohocken, PA: ASTM.
Li, B., M. Huang, and X. Zeng. 2016. “Dynamic behavior and liquefaction analysis of recycled-rubber sand mixtures.” J. Mater. Civ. Eng. 28 (11): 04016122. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001629.
Liu, Y. J., G. Li, Z. Y. Yin, C. Dano, P. Y. Hicher, X. H. Xia, and J. H. Wang. 2014. “Influence of grading on the undrained behavior of granular materials.” C. R. Méc. 342 (2): 85–95. https://doi.org/10.1016/j.crme.2013.11.001.
Marie, I., and H. Quiasrawi. 2012. “Closed-loop recycling of recycled concrete aggregates.” J. Cleaner Prod. 37: 243–248. https://doi.org/10.1016/j.jclepro.2012.07.020.
Martin, G. R., W. L. Finn, and H. B. Seed. 1975. “Fundamentals of liquefaction under cyclic loading.” J. Geotech. Eng. Div. 101 (5): 423–438. https://doi.org/10.1061/AJGEB6.0000164.
Masad, E., R. Taha, C. Ho, and T. Papagiannakis. 1996. “Engineering properties of tire/soil mixtures as a lightweight fill material.” Geotech. Test. J. 19 (3): 297–304. https://doi.org/10.1520/GTJ10355J.
Mashiri, M. S., J. S. Vinod, M. N. Sheikh, and J. A. H. Carraro. 2018. “Shear modulus of sand–tyre chip mixtures.” Environ. Geotech. 5 (6): 336–344. https://doi.org/10.1680/jenge.16.00016.
Miura, S., and S. Toki. 1982. “A sample preparation method and its effect on static and cyclic deformation–strength properties of sand.” Soils Found. 22 (1): 61–77. https://doi.org/10.3208/sandf1972.22.61.
Monkul, M. M. 2013. “Influence of gradation on shear strength and volume change behavior of silty sands.” Geomech. Eng. 5 (5): 401–417. https://doi.org/10.12989/gae.2013.5.5.401.
Monkul, M. M., E. Etminan, and A. Senol. 2016. “Influence of coefficient of uniformity and base sand gradation on static liquefaction of loose sands with silt.” Soil Dyn. Earthq. Eng. 89: 185–197. https://doi.org/10.1016/j.soildyn.2016.08.001.
Morris, M., M. Dyer, and P. Smith. 2007. Management of flood embankments: A good practice review. Technical Rep. No. FD2411/TR1. London: DEFRA.
Naeini, S. A., and M. H. Baziar. 2004. “Effect of fines content on steady-state strength of mixed and layered samples of a sand.” Soil Dyn. Earthquake Eng. 24 (3): 181–187. https://doi.org/10.1016/j.soildyn.2003.11.003.
Ngo, A. T., and J. R. Valdes. 2007. “Creep of sand–rubber mixtures.” J. Mater. Civ. Eng. 19 (12): 1101–1105. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:12(1101).
Noorzad, R., and P. F. Amini. 2014. “Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading.” Soil Dyn. Earthquake Eng. 66: 281–292. https://doi.org/10.1016/j.soildyn.2014.07.011.
Noorzad, R., and M. Shakeri. 2017. “Effect of silt on post-cyclic shear strength of sand.” Soil Dyn. Earthquake Eng. 97: 133–142. https://doi.org/10.1016/j.soildyn.2017.03.013.
Phien-Wej, N., P. Nutalaya, Z. Aung, and T. Zhibin. 1993. “Catastrophic landslides and debris flows in Thailand.” Bull. Int. Assoc. Eng. Geol. 48 (1): 93–100. https://doi.org/10.1007/BF02594981.
Pitman, T. D., P. K. Robertson, and D. C. Sego. 1994. “Influence of fines on the collapse of loose sands.” Can. Geotech. J. 31 (5): 728–739. https://doi.org/10.1139/t94-084.
Polito, C. P. 1999. “The effects of non-plastic and plastic fines on the liquefaction of sandy soils.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Virginia Tech.
Poulos, S. J., G. Castro, and J. W. France. 1985. “Liquefaction evaluation procedure.” J. Geotech. Eng. 111 (6): 772–792. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:6(772).
Prakash, S. 1981. Soil dynamics. New York: McGraw-Hill.
Rahgozar, M. A., and M. Saberian. 2016. “Geotechnical properties of peat soil stabilised with shredded waste tyre chips.” Mire Peat 18: 1–12. https://doi.org/10.19189/MaP.2015.OMB.205.
Rahman, M. M., and S. R. Lo. 2007. “On intergranular void ratio of loose sand with small amount of fines.” In Proc., 16th South East Asian Geotechnical Conf., 255–260. Pathumthani, Thailand: Southeast Asian Geotechnical Society.
Reddy, S., D. Pradeep Kumar, and A. Murali Krishna. 2016. “Evaluation of the optimum mixing ratio of a sand–tire chips mixture for geoengineering applications.” J. Mater. Civ. Eng. 28 (2): 06015007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001335.
Seed, H. B., R. C. Chaney, and S. Pamukcu. 1991. “Earthquake effects on soil–foundation systems.” In Foundation engineering handbook, edited by H. Y. Fang, 594–672. Boston, MA: Springer.
Seed, H. B., and K. L. Lee. 1966. “Liquefaction of saturated sands during cyclic loading.” J. Soil Mech. Found. Div. 92 (6): 105–134.
Shahrokhi-Shahraki, R., P. S. Kwon, J. Park, B. C. O’Kelly, and S. Rezania. 2020. “BTEX and heavy metals removal using pulverized waste tires in engineered fill materials.” Chemosphere 242: 125281. https://doi.org/10.1016/j.chemosphere.2019.125281.
Sheikh, N. M., M. S. Mashiri, J. S. Vinod, and H. H. Tsang. 2013. “Shear and compressibility behavior of sand–tire crumb mixtures.” J. Mater. Civ. Eng. 25 (10): 1366–1374. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000696.
Sladen, J. A., R. D. D’Hollander, and J. Krahn. 1985. “The liquefaction of sands, a collapse surface approach.” Can. Geotech. J. 22 (4): 564–578. https://doi.org/10.1139/t85-076.
Soltani, A., A. Deng, A. Taheri, and B. C. O’Kelly. 2019. “Engineering reactive clay systems by ground rubber replacement and polyacrylamide treatment.” Polymers 11 (10): 1675. https://doi.org/10.3390/polym11101675.
Soltani, A., A. Taheri, A. Deng, and B. C. O’Kelly. 2020. “Improved geotechnical behavior of an expansive soil amended with tire-derived aggregates having different gradations.” Materials 10 (10): 923. https://doi.org/10.3390/min10100923.
Soriano, I., E. Ibraim, E. Ando, A. Diambra, T. Laurencin, P. Moro, and G. Viggiani. 2017. “3D fibre architecture of fibre-reinforced sand.” Granular Matter 19 (4): 75. https://doi.org/10.1007/s10035-017-0760-3.
Su, H., J. Yang, T. C. Ling, G. S. Ghataora, and S. Dirar. 2015. “Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes.” J. Cleaner Prod. 91: 288–296. https://doi.org/10.1016/j.jclepro.2014.12.022.
Taiba, A. C., M. Belkhatir, A. Kadri, Y. Mahmoudi, and T. Schanz. 2016. “Insight into the effect of granulometric characteristics on the static liquefaction susceptibility of silty sand soils.” Geotech. Geol. Eng. 34 (1): 367–382. https://doi.org/10.1007/s10706-015-9951-z.
Ter-Stepanian, G. 2002. “Suspension force and mechanism of debris flows.” Bull. Eng. Geol. Environ. 61 (3): 197–205. https://doi.org/10.1007/s10064-002-0156-3.
Thevanayagam, S. 1997. “Dielectric dispersion of porous media as a fractal phenomenon.” J. Appl. Phys. 82 (5): 2538–2547. https://doi.org/10.1063/1.366065.
Thevanayagam, S. 1998. “Effect of fines and confining stress on undrained shear strength of silty sands.” J. Geotech. Geoenviron. Eng. 124 (6): 479–491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479).
Thevanayagam, S., and G. R. Martin. 2002. “Liquefaction in silty soils—Screening and remediation issues.” Soil Dyn. Earthquake Eng. 22 (9–12): 1035–1042. https://doi.org/10.1016/S0267-7261(02)00128-8.
Thevanayagam, S., and S. Mohan. 2000. “Intergranular state variables and stress–strain behaviour of silty sands.” Géotechnique 50 (1): 1–23. https://doi.org/10.1680/geot.2000.50.1.1.
Topcu, I. B. 1995. “The properties of rubberized concretes.” Cem. Concr. Res. 25 (2): 304–310. https://doi.org/10.1016/0008-8846(95)00014-3.
Troncoso, J. H., and R. Verdugo. 1985. “Silt content and dynamic behavior of tailing sands.” In Proc., 11th Int. Conf. on Soil Mechanics and Foundation Engineering, 1311–1314. London: CRC Press.
Uchumura, T., N. A. Chi, S. Nirmalan, T. Sato, M. Meidani, and I. Towhata. 2007. “Shaking table tests on effect of tire chips and sand mixture in increasing liquefaction resistance and mitigating uplift of pipe.” In Proc. Int. Workshop on Scrap Tire Derived Geomaterials — Opportunities and Challenges, edited by H. Hazarika and K. Yasuhara, 179–186. London, UK: CRC Press.
Vaid, Y. P., and J. Thomas. 1995. “Liquefaction and postliquefaction behavior of sand.” J. Geotech. Eng. 121 (2): 163–173. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:2(163).
Verdugo, R., and K. Ishihara. 1996. “The steady state of sandy soils.” Soils Found. 36 (2): 81–91. https://doi.org/10.3208/sandf.36.2_81.
Wadell, H. 1932. “Volume, shape, and roundness of rock particles.” J. Geol. 40 (5): 443–451. https://doi.org/10.1086/623964.
Wong, R. T., H. B. Seed, and C. K. Chan. 1975. “Cyclic loading liquefaction of gravelly soils.” J. Geotech. Eng. Div. 101 (GT6): 571–583. https://doi.org/10.1061/AJGEB6.0000174.
Xenaki, V. C., and G. A. Athanasopoulos. 2003. “Liquefaction resistance of sand–silt mixtures: An experimental investigation of the effect of fines.” Soil Dyn. Earthquake Eng. 23 (3): 1–12. https://doi.org/10.1016/S0267-7261(02)00210-5.
Xia, Z., R. Chen, and X. Kang. 2019. “Laboratory characterization and modelling of the thermal-mechanical properties of binary soil mixtures.” Soils Found. 59 (6): 2167–2179. https://doi.org/10.1016/j.sandf.2019.11.013.
Xu, X. M., D. S. Ling, Y. P. Cheng, and Y. M. Chen. 2015. “Correlation between liquefaction resistance and shear wave velocity of granular soils: A micromechanical perspective. Gèotechnique 65 (5): 337–348. https://doi.org/10.1680/geot.SIP.15.P.022.
Yamamuro, J. A., and K. M. Covert. 2001. “Monotonic and cyclic liquefaction of very loose sands with high silt content.” J. Geotech. Geoenviron. Eng. 127 (4): 314–324. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(314).
Yamamuro, J. A., and P. V. Lade. 1999. “Experiments and modelling of silty sands susceptible to static liquefaction.” Mech. Cohesive-Frict. Mater. 4 (6): 545–564. https://doi.org/10.1002/(SICI)1099-1484(199911)4:6%3C545::AID-CFM73%3E3.0.CO;2-O.
Yang, S. L., R. Sandven, and L. Grande. 2006. “Instability of sand–silt mixtures.” Soil Dyn. Earthquake Eng. 26 (2–4): 183–190. https://doi.org/10.1016/j.soildyn.2004.11.027.
Yılmaz, D., F. Babuçcu, S. Batmaz, and F. Kavruk. 2008. “Liquefaction analysis and soil improvement in Beydag dam.” Geotech. Geol. Eng. 26: 211–224. https://doi.org/10.1007/s10706-007-9158-z.
Yin, Z. Y., J. Zhao, and P. Y. Hicher. 2014. “A micromechanics-based model for sand–silt mixtures.” Int. J. Solids Struct. 51 (6): 1350–1363. https://doi.org/10.1016/j.ijsolstr.2013.12.027.
Youwai, S., and D. T. Bergado. 2003. “Strength and deformation characteristics of shredded rubber tire–sand mixtures.” Can. Geotech. J. 40 (2): 254–264. https://doi.org/10.1139/t02-104.
Zlatović, S., and K. Ishihara. 1995. “On the influence of nonplastic fines on residual strength.” In Proc., 1st Int. Conf. on Earthquake Geotechnical Engineering, edited by K. Ishihara, 239–244. Rotterdam, Netherlands: Balkema.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 6June 2021

History

Received: Apr 16, 2020
Accepted: Dec 10, 2020
Published online: Mar 24, 2021
Published in print: Jun 1, 2021
Discussion open until: Aug 24, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Civil Engineering Dept., Urmia Univ., Oroumieh 5756151818, Iran. ORCID: https://orcid.org/0000-0003-2859-451X. Email: [email protected]
Alireza Samadzadeh [email protected]
Civil Engineering Dept., Urmia Univ., Oroumieh 5756151818, Iran. Email: [email protected]
Hadi Bahadori, Ph.D. [email protected]
Civil Engineering Dept., Urmia Univ., Oroumieh 5756151818, Iran (corresponding author). Email: [email protected]
Brendan C. O’Kelly, Ph.D. [email protected]
Dept. of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02 PN40, Ireland. Email: [email protected]
Arya Assadi-Langroudi, Ph.D. [email protected]
Engineering Division, Univ. of East London, Royal Docklands, London E16 2RD, UK. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share