Technical Papers
Dec 29, 2020

Quantitative Acoustic Emissions Source Mechanisms Analysis of Soft and Competent Rocks through Micromechanics-Seismicity Coupled Modeling

Publication: International Journal of Geomechanics
Volume 21, Issue 3

Abstract

This research studied seismic source mechanisms of acoustic emission (AE) events generated during the failure of intact and jointed rock samples using a microscale mechanical-seismicity coupled microscale model. During rock failure, forces and displacements around microcracks were measured in the model to determine seismic moment tensor. Interpretation of AE data was carried out by decomposing the moment tensor into a double couple (DC), a compensated linear vector dipole (CLVD), and isotropic component (ISO). In this study, microscale numerical models of Lac du Bonnet (LDB) granite (intact and jointed) and a Berea sandstone sample were built to represent the mechanical behavior of hard and soft rocks. Subsequently, several numerical triaxial tests under different confining pressures were conducted to analyze source mechanisms of AE events during rock failure. Numerical analysis shows the significant contribution of positive non-DC component during the LDB granite rock failure and significant DC component during the Berea rock failure. The source mechanisms of AE move to the negative non-DC component at higher confining for both granite and sandstone samples. Joint failure causes non-DC component toward crack opening at low confining pressure and a non-DC component toward crack closure events under higher confining pressure. Simulation results, presented in this work, show how micromechanical properties of rocks and joints as well as stress conditions give rise to different types of AE source mechanisms during rock failure.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Support of the University of Wyoming (UW) and UW School of Energy Resources is gratefully acknowledged.

References

Aker, E., D. Kühn, V. Vavryčuk, M. Soldal, and V. Oye. 2014. “Experimental investigation of acoustic emissions and their moment tensors in rock during failure.” Int. J. Rock Mech. Min. Sci. 70: 286–295. https://doi.org/10.1016/j.ijrmms.2014.05.003.
Aki, K., and P. G. Richards. 2002. Quantitative seismology. 2nd ed. Mill Valley, CA: Univ. Science Book.
Bohnhoff, M., G. Dresen, W. L. Ellsworth, and H. Ito. 2009. “Passive seismic monitoring of natural and induced earthquakes: Case studies, future directions and socio-economic relevance.” In New frontiers in integrated solid earth sciences, edited by S. Cloetingh, and J. Negendank, 261–285. Dordrecht, Netherlands: Springer.
Cai, M., P. K. Kaiser, H. Morioka, M. Minami, T. Maejima, Y. Tasaka, and H. Kurose. 2007. “FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations.” Int. J. Rock Mech. Min. Sci. 44 (4): 550–564. https://doi.org/10.1016/j.ijrmms.2006.09.013.
Castro-Filgueira, U., L. Alejano, J. Arzúa, and D. Mas. 2016. “Numerical simulation of the stress-strain behavior of intact granite specimens with Particle Flow Code.” In Rock mechanics and rock engineering: From the past to the future, edited by R. Ulusay, 421–426. London: Taylor and Francis.
Chang, S.-H., and C.-I. Lee. 2004. “Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission.” Int. J. Rock Mech. Min. Sci. 41 (7): 1069–1086. https://doi.org/10.1016/j.ijrmms.2004.04.006.
Chen, G., J. Wang, J. Li, T. Li, and H. Zhang. 2018. “Influence of temperature on crack initiation and propagation in granite.” Int. J. Geomech. 18 (8): 04018094. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001182.
Cho, N., C. D. Martin, and D. C. Sego. 2007. “A clumped particle model for rock.” Int. J. Rock Mech. Min. Sci. 44 (7): 997–1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
Cook, B. K., M. Y. Lee, A. A. DiGiovanni, D. R. Bronowski, E. D. Perkins, and J. R. Williams. 2004. “Discrete element modeling applied to laboratory simulation of near-wellbore mechanics.” Int. J. Geomech. 4 (1): 19–27. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:1(19).
Duan, K., C. Y. Kwok, and X. Ma. 2017. “DEM simulations of sandstone under true triaxial compressive tests.” Acta Geotech. 12 (3): 495–510. https://doi.org/10.1007/s11440-016-0480-6.
Duan, K., C. Y. Kwok, Q. Zhang, and J. Shang. 2020. “On the initiation, propagation and reorientation of simultaneously-induced multiple hydraulic fractures.” Comput. Geotech. 117: 103226. https://doi.org/10.1016/j.compgeo.2019.103226.
Dusseault, M. B. 2007. “Monitoring and modelling in coupled geomechanics processes.” In Canadian Int. Petroleum Conf., 1–10. Calgary, AB, Canada: Petroleum Society of Canada.
Esmaieli, K., J. Hadjigeorgiou, and M. Grenon. 2010. “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine.” Int. J. Rock Mech. Min. Sci. 47 (6): 915–926. https://doi.org/10.1016/j.ijrmms.2010.05.010.
Fakhimi, A., and T. Villegas. 2007. “Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture.” Rock Mech. Rock Eng. 40 (2): 193–211. https://doi.org/10.1007/s00603-006-0095-6.
Fortin, J., S. Stanchits, G. Dresen, and Y. Guéguen. 2006. “Acoustic emission and velocities associated with the formation of compaction bands in sandstone.” J. Geophys. Res.: Solid Earth 111: B10203. https://doi.org/10.1029/2005JB003854.
Fortin, J., S. Stanchits, G. Dresen, and Y. Gueguen. 2009. “Acoustic emissions monitoring during inelastic deformation of porous sandstone: Comparison of three modes of deformation.” Pure Appl. Geophys. 166 (5–7): 823–841. https://doi.org/10.1007/s00024-009-0479-0.
Graham, C. C., S. Stanchits, I. G. Main, and G. Dresen. 2010. “Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data.” Int. J. Rock Mech. Min. Sci. 47 (1): 161–169. https://doi.org/10.1016/j.ijrmms.2009.05.002.
Hazzard, J. F., and R. P. Young. 2002. “Moment tensors and micromechanical models.” Tectonophysics 356 (1–3): 181–197. https://doi.org/10.1016/S0040-1951(02)00384-0.
Hazzard, J. F., and R. P. Young. 2004. “Dynamic modelling of induced seismicity.” Int. J. Rock Mech. Min. Sci. 41 (8): 1365–1376. https://doi.org/10.1016/j.ijrmms.2004.09.005.
Hazzard, J. F., R. P. Young, and S. C. Maxwell. 2000. “Micromechanical modeling of cracking and failure in brittle rocks.” J. Geophys. Res.: Solid Earth 105 (B7): 16683–16697. https://doi.org/10.1029/2000JB900085.
Holt, R., L. Li, and D. Holcomb. 2008. “A qualitative comparison between discrete particle modeling and laboratory observations of compaction bands in porous rock.” In Proc., 42nd US Rock Mechanics Symp., 1–6. Alexandria, VA: American Rock Mechanics Association.
Huang, D., and T.-T. Zhu. 2018. “Experimental and numerical study on the strength and hybrid fracture of sandstone under tension-shear stress.” Eng. Fract. Mech. 200: 387–400. https://doi.org/10.1016/j.engfracmech.2018.08.012.
Hudson, J. A., R. G. Pearce, and R. M. Rogers. 1989. “Source type plot for inversion of the moment tensor.” J. Geophys. Res. 94 (B1): 765–774. https://doi.org/10.1029/JB094iB01p00765.
Hunt, S. P., A. G. Meyers, and V. Louchnikov. 2003. “Modelling the Kaiser effect and deformation rate analysis in sandstone using the discrete element method.” Comput. Geotech. 30 (7): 611–621. https://doi.org/10.1016/S0266-352X(03)00061-2.
Ivars, D. M., M. E. Pierce, C. Darcel, J. Reyes-Montes, D. O. Potyondy, R. P. Young, and P. A. Cundall. 2011. “The synthetic rock mass approach for jointed rock mass modelling.” Int. J. Rock Mech. Min. Sci. 48 (2): 219–244. https://doi.org/10.1016/j.ijrmms.2010.11.014.
Jin, G., T. W. Patzek, and D. B. Silin. 2003. “Physics-based reconstruction of sedimentary rocks.” In SPE Western Regional/AAPG Pacific Section Joint Meeting, 1–14. Richardson, TX: Society of Petroleum Engineers.
Jouinaux, L., K. Masuda, X. Lei, O. Nishizawa, K. Kusunose, L. Liu, and W. Ma. 2001. “Comparison of the microfracture localization in granite between fracturation and slip of a preexisting macroscopic healed joint by acoustic emission measurements.” J. Geophys. Res.: Solid Earth 106 (B5): 8687–8698. https://doi.org/10.1029/2000JB900411.
Kao, C.-S., F. C. S. Carvalho, and J. F. Labuz. 2011. “Micromechanisms of fracture from acoustic emission.” Int. J. Rock Mech. Min. Sci. 48 (4): 666–673. https://doi.org/10.1016/j.ijrmms.2011.04.001.
Kwiatek, G., E.-M. Charalampidou, G. Dresen, and S. Stanchits. 2014. “An improved method for seismic moment tensor inversion of acoustic emissions through assessment of sensor coupling and sensitivity to incidence angle.” Int. J. Rock Mech. Mining Sci. 65: 153–161. https://doi.org/10.1016/j.ijrmms.2013.11.005.
Labuz, J. F., S. P. Shah, and C. H. Dowding. 1987. “The fracture process zone in granite: Evidence and effect.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 24 (4): 235–246. https://doi.org/10.1016/0148-9062(87)90178-1.
Lei, X. 2019. “Evolution of b-value and fractal dimension of acoustic emission events during shear rupture of an immature fault in Granite.” Appl. Sci. 9 (12): 2498. https://doi.org/10.3390/app9122498.
Lei, X., K. Kusunose, M. V. M. S. Rao, O. Nishizawa, and T. Satoh. 2000a. “Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring.” J. Geophys. Res.: Solid Earth 105 (B3): 6127–6139. https://doi.org/10.1029/1999JB900385.
Lei, X., K. Masuda, O. Nishizawa, L. Jouniaux, L. Liu, W. Ma, T. Satoh, and K. Kusunose. 2004. “Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock.” J. Struct. Geol. 26 (2): 247–258. https://doi.org/10.1016/S0191-8141(03)00095-6.
Lei, X., O. Nishizawa, K. Kusunose, and T. Satoh. 1992. “Fractal structure of the hypocenter distributions and focal mechanism solutions of acoustic emission in two granites of different grain sizes.” J. Phys. Earth 40 (60): 617–634. https://doi.org/10.4294/jpe1952.40.617.
Lei, X. L., K. Kusunose, O. Nishizawa, A. Cho, and T. Satoh. 2000b. “On the spatio-temporal distribution of acoustic emissions in two granitic rocks under triaxial compression: The role of pre-existing cracks.” Geophys. Res. Lett. 27 (13): 1997–2000. https://doi.org/10.1029/1999GL011190.
Li, L., and R. Holt. 2002. “Particle scale reservoir mechanics.” Oil Gas Sci. Technol. 57 (5): 525–538. https://doi.org/10.2516/ogst:2002035.
Li, W., Y. Han, T. Wang, and J. Ma. 2017. “DEM micromechanical modeling and laboratory experiment on creep behavior of salt rock.” J. Nat. Gas Sci. Eng. 46: 38–46. https://doi.org/10.1016/j.jngse.2017.07.013.
Li, Y.-h., and J.-p. Liu. 2017. “Detection of cracking and damage mechanisms in brittle granites by moment tensor analysis of acoustic emission signals.” Acoust. Phys. 63 (3): 359–367. https://doi.org/10.1134/S1063771017030137.
Lockner, D. 1993. “The role of acoustic emission in the study of rock fracture.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30 (7): 883–899. https://doi.org/10.1016/0148-9062(93)90041-B.
Lockner, D. A., J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin. 1991. “Quasi-static fault growth and shear fracture energy in granite.” Nature 350 (6313): 39–42. https://doi.org/10.1038/350039a0.
Lockner, D. A., J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin. 1992. “Observations of quasistatic fault growth from acoustic emissions.” Int. Geophys. 51: 3–31. https://doi.org/10.1016/S0074-6142(08)62813-2.
Madariaga, R. 1976. “Dynamics of an expanding circular fault.” Bull. Seismol. Soc. Am. 66 (3): 639–666.
Martin, C. D. 1993. “The strength of massive Lac du Bonnet granite around underground openings.” Doctoral dissertation, Dept. of Civil & Geological Engineering, Univ. of Manitoba, Manitoba, Canada.
Mas Ivars, D., D. Potyondy, M. Pierce, and P. Cundall. 2008. “The smooth-joint contact model.” In Proc., 8th World Cong. on Computational Mechanics – 5th European Cong. on Computation Mechanics and Applied Science and Engineering, 27–35. Venice, Italy: International Centre for Numerical Methods in Engineering.
Maxwell, S. C., J. Rutledge, R. Jones, and M. Fehler. 2010. “Petroleum reservoir characterization using downhole microseismic monitoring.” Geophysics 75 (5): 75A129–75A137. https://doi.org/10.1190/1.3477966.
Müller, C., T. Frühwirt, D. Haase, R. Schlegel, and H. Konietzky. 2018. “Modeling deformation and damage of rock salt using the discrete element method.” Int. J. Rock Mech. Min. Sci. 103: 230–241. https://doi.org/10.1016/j.ijrmms.2018.01.022.
Nabipour, A., B. Evans, T. Mϋller, and M. Sarmadivaleh. 2011. “Evaluation of PFC 2D for modeling seismic monitoring of hydraulic fracture.” In Proc., 2nd Int. FLAC/DEM Symp.
Nasseri, M. H. B., S. D. Goodfellow, L. Lombos, and R. P. Young. 2014. “3-D transport and acoustic properties of Fontainebleau sandstone during true-triaxial deformation experiments.” Int. J. Rock Mech. Min. Sci. 69: 1–18. https://doi.org/10.1016/j.ijrmms.2014.02.014.
Olsson, W. A., and D. J. Holcomb. 2000. “Compaction localization in porous rock.” Geophys. Res. Lett. 27 (21): 3537–3540. https://doi.org/10.1029/2000GL011723.
O’Sullivan, C. 2011. Particulate discrete element modelling: A geomechanics perspective. London: CRC Press.
Peng, J., L. N. Y. Wong, and C. I. Teh. 2017. “Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks.” J. Geophys. Res.: Solid Earth 122 (2): 1054–1073. https://doi.org/10.1002/2016JB013469.
Pierce, M., D. Mas Ivars, and B. Sainsbury. 2009. “Use of synthetic rock masses (SRM) to investigate jointed rock mass strength and deformation behavior.” In Int. Conf. on Rock Joints and Jointed Rock Masses, 1–6. Tucson, AZ: International Society for Rock Mechanics (ISRM).
Potyondy, D. 2010. “A grain-based model for rock: Approaching the true microstructure.” In Proc., Rock Mechanics in the Nordic Countries, 225–234, Kongsberg, Norway: Norwegian Group for Rock Mechanics.
Potyondy, D. O. 2015. “The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions.” Geosyst. Eng. 18 (1): 1–28. https://doi.org/10.1080/12269328.2014.998346.
Potyondy, D. O., and P. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Raziperchikolaee, S., V. Alvarado, and S. Yin. 2014a. “Effect of fracture roughness on seismic source and fluid transport responses.” Geophys. Res. Lett. 41 (5): 1530–1536. https://doi.org/10.1002/2013GL058683.
Raziperchikolaee, S., V. Alvarado, and S. Yin. 2014b. “Microscale modeling of fluid flow-geomechanics-seismicity: Relationship between permeability and seismic source response in deformed rock joints.” J. Geophys. Res.: Solid Earth 119 (9): 6958–6975. https://doi.org/10.1002/2013JB010758.
Raziperchikolaee, S., V. Alvarado, and S. Yin. 2014c. “Prediction of transport properties of deformed natural fracture through micro-scale hydro-mechanical modeling.” Transp. Porous Media 104 (1): 1–23. https://doi.org/10.1007/s11242-014-0317-4.
Reches, Z., and D. A. Lockner. 1994. “Nucleation and growth of faults in brittle rocks.” J. Geophys. Res.: Solid Earth 99 (B9): 18159–18173. https://doi.org/10.1029/94JB00115.
Ren, F., C. Zhu, and M. He. 2020. “Moment tensor analysis of acoustic emissions for cracking mechanisms during schist strain burst.” Rock Mech. Rock Eng. 53 (1): 153–170. https://doi.org/10.1007/s00603-019-01897-3.
Scholtès, L., and F.-V. Donzé. 2013. “A DEM model for soft and hard rocks: Role of grain interlocking on strength.” J. Mech. Phys. Solids 61 (2): 352–369. https://doi.org/10.1016/j.jmps.2012.10.005.
Shah, K. R., and J. F. Labuz. 1995. “Damage mechanisms in stressed rock from acoustic emission.” J. Geophys. Res.: Solid Earth 100 (B8): 15527–15539. https://doi.org/10.1029/95JB01236.
Shimizu, H., T. Koyama, T. Ishida, M. Chijimatsu, T. Fujita, and S. Nakama. 2010. “Distinct element analysis for Class II behavior of rocks under uniaxial compression.” Int. J. Rock Mech. Min. Sci. 47 (2): 323–333. https://doi.org/10.1016/j.ijrmms.2009.09.012.
Shimizu, H., S. Murata, and T. Ishida. 2009. “Distinct element analysis for rock failure considering Ae events generated by the slip at crack surfaces.” J. Acoust. Emission 27: 194–211.
Stanchits, S., S. Vinciguerra, and G. Dresen. 2006. “Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite.” Pure Appl. Geophys. 163 (5–6): 975–994. https://doi.org/10.1007/s00024-006-0059-5.
Stein, S., and M. Wysession. 2009. An introduction to seismology, earthquakes, and earth structure. Hoboken, NJ: John Wiley & Sons.
Stierle, E., V. Vavryčuk, G. Kwiatek, E.-M. Charalampidou, and M. Bohnhoff. 2016. “Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: Sensitivity to attenuation and anisotropy.” Geophys. J. Int. 205 (1): 38–50. https://doi.org/10.1093/gji/ggw009.
Townend, E., B. D. Thompson, P. M. Benson, P. G. Meredith, P. Baud, and R. P. Young. 2008. “Imaging compaction band propagation in diemelstadt sandstone using acoustic emission locations.” Geophys. Res. Lett. 35 (15): L15301. https://doi.org/10.1029/2008GL034723.
Vallejos, J. A., J. M. Salinas, A. Delonca, and D. Mas Ivars. 2017. “Calibration and verification of two bonded-particle models for simulation of intact rock behavior.” Int. J. Geomech. 17 (4): 06016030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000773.
Vavryčuk, V. 2001. “Inversion for parameters of tensile earthquakes.” J. Geophys. Res.: Solid Earth 106 (B8): 16339–16355. https://doi.org/10.1029/2001JB000372.
Vavryčuk, V. 2004. “Inversion for anisotropy from non-double-couple components of moment tensors.” J. Geophys. Res.: Solid Earth 109 (B7): B07306. https://doi.org/10.1029/2003JB002926.
Vavryčuk, V. 2005. “Focal mechanisms in anisotropic media.” Geophys. J. Int. 161 (2): 334–346. https://doi.org/10.1111/j.1365-246X.2005.02585.x.
Wang, Y., and F. Tonon. 2009. “Modeling Lac du Bonnet granite using a discrete element model.” Int. J. Rock Mech. Min. Sci. 46 (7): 1124–1135. https://doi.org/10.1016/j.ijrmms.2009.05.008.
Wang, Z., A. He, G. Shi, and G. Mei. 2018. “Temperature effect on AE energy characteristics and damage mechanical behaviors of granite.” Int. J. Geomech. 18 (3): 04017163. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001094.
Wong, L. N. Y., and Q. Xiong. 2018. “A method for multiscale interpretation of fracture processes in Carrara marble specimen containing a single flaw under uniaxial compression.” J. Geophys. Res.: Solid Earth 123 (8): 6459–6490. https://doi.org/10.1029/2018JB015447.
Wong, T. f., C. David, and W. Zhu. 1997. “The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation.” J. Geophys. Res.: Solid Earth 102 (B2): 3009–3025. https://doi.org/10.1029/96JB03281.
Yang, S.-Q., Y.-H. Huang, H.-W. Jing, and X.-R. Liu. 2014. “Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression.” Eng. Geol. 178: 28–48. https://doi.org/10.1016/j.enggeo.2014.06.005.
Zang, A., C. F. Wagner, and G. Dresen. 1996. “Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure.” J. Geophys. Res.: Solid Earth 101 (B8): 17507–17521. https://doi.org/10.1029/96JB01189.
Zhang, J.-Z., and X.-P. Zhou. 2020. “AE event rate characteristics of flawed granite: From damage stress to ultimate failure.” Geophys. J. Int. 222 (2): 795–814. https://doi.org/10.1093/gji/ggaa207.
Zhang, J. Z., X. P. Zhou, L. S. Zhou, and F. Berto. 2019. “Progressive failure of brittle rocks with non-isometric flaws: Insights from acousto-optic-mechanical (AOM) data.” Fatigue Fract. Eng. Mater. Struct. 42 (8): 1787–1802. https://doi.org/10.1111/ffe.13019.
Zhou, X.-P., J.-Z. Zhang, Q.-H. Qian, and Y. Niu. 2019. “Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques.” J. Struct. Geol. 126: 129–145. https://doi.org/10.1016/j.jsg.2019.06.003.
Zhou, X.-P., J.-Z. Zhang, and L. N. Y. Wong. 2018. “Experimental study on the growth, coalescence and wrapping behaviors of 3D cross-embedded flaws under uniaxial compression.” Rock Mech. Rock Eng. 51 (5): 1379–1400. https://doi.org/10.1007/s00603-018-1406-4.
Zhu, W., and T. f. Wong. 1997. “The transition from brittle faulting to cataclastic flow: Permeability evolution.” J. Geophys. Res.: Solid Earth 102 (B2): 3027–3041. https://doi.org/10.1029/96JB03282.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 3March 2021

History

Received: Apr 4, 2020
Accepted: Oct 1, 2020
Published online: Dec 29, 2020
Published in print: Mar 1, 2021
Discussion open until: Jun 4, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Dept. of Chemical and Petroleum Engineering, Univ. of Wyoming, Laramie, WY 82071; formerly, Energy Division, Battelle Memorial Institute, Columbus, OH 43204 (corresponding author). ORCID: https://orcid.org/0000-0001-7940-9244. Email: [email protected]
Dept. of Chemical and Petroleum Engineering, Univ. of Wyoming, Laramie, WY 82071; formerly, Dept. of Chemical Engineering, Univ. of Wyoming, Laramie, WY 82071. ORCID: https://orcid.org/0000-0001-9559-0565. Email: [email protected]
Shunde Yin
Dept. of Chemical and Petroleum Engineering, Univ. of Wyoming, Laramie, WY 82071; formerly, Dept. of Civil and Environmental Engineering, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share