Abstract

The earthquake-induced rock avalanche in the Tangjia Valley was the most notable geological disaster triggered by the Lushan earthquake in 2013. In order to investigate the transport kinematics and depositional mechanism of this catastrophic landslide, a 2D discrete element model was developed and calibrated using field data. The model was then used to analyze the seismic response and mass transport process of a natural slope. The slope response to earthquake was numerically studied focusing on crack initiation, propagation, and coalescence within the rock mass. The mass movement and accumulation process were interpreted in terms of evolution of stress and solid fraction, kinematic behavior, and energy conversion. During the mass transport process, the slope was fragmented progressively due to intense shearing, allowing a basal layer of gradually fining solid particles to be generated with simultaneous occurrence of violent collisions, increase in particle kinematic activities, and the reduction of solid concentration. To further study this deformation process, fragment size distributions and fractal dimensions were described by Weibull distribution and power-law function, respectively. This statistical analysis reveals that dynamic disintegration continuously operates with the increasing runout distance. It is also found that the distribution of the fragment shapes becomes stable as the avalanche loses its momentum and deposition starts in the runout area. The proposed framework for the analysis of rock avalanches can be used to understand the physics of similar geological hazards.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Financial support provided by McGill Engineering Doctoral Award (MEDA) to the first author is appreciated.

References

Antolini, F., M. Barla, G. Gigli, A. Giorgetti, E. Intrieri, and N. Casagli. 2016. “Combined finite–discrete numerical modeling of runout of the Torgiovannetto di Assisi rockslide in central Italy.” Int. J. Geomech. 16 (6): 04016019. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000646.
Bagnold, R. A. 1954. “Experiments on gravity-free dispersion of large solid sphere in a Newtonian fluid under shear.” Proc. R Soc. A 225 (1160): 49–63. https://doi.org/10.1098/rspa.1954.0186.
Barla, M., G. Piovano, and G. Grasselli. 2011. “Rock slide simulation with the combined finite-discrete element method.” Int. J. Geomech. 12 (6): 711–721. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000204.
Bolton, M. D., Y. Nakata, and Y. P. Cheng. 2008. “Micro- and micro-mechanical behaviour of DEM crushable materials.” Géotechnique 58 (6): 471–480. https://doi.org/10.1680/geot.2008.58.6.471.
Bowman, E. T., W. A. Take, K. L. Rait, and C. Hann. 2012. “Physical models of rock avalanche spreading behaviour with dynamic fragmentation.” Can. Geotech. J. 49 (4): 460–476. https://doi.org/10.1139/t2012-007.
Calvetti, F., G. Crosta, and M. Tatarella. 2000. “Numerical simulation of dry granular flows: From the reproduction of small-scale experiments to the prediction of rock avalanches.” Riv. Ital. Geotech. 22 (2): 21–38.
Campbell, C. S. 1989. “Self-lubrication for long run-out landslides.” J. Geol. 97 (6): 653–665. https://doi.org/10.1086/629350.
Campbell, C. S. 1990. “Rapid granular flows.” Annu. Rev. Fluid Mech. 22 (1): 57–90. https://doi.org/10.1146/annurev.fl.22.010190.000421.
Campbell, C. S. 2006. “Granular material flows: An overview.” Powder Technol. 162 (3): 208–229. https://doi.org/10.1016/j.powtec.2005.12.008.
Campbell, C. S., P. W. Cleary, and M. Hopkins. 1995. “Large-scale landslide simulations: Global deformation, velocities and basal friction.” J. Geophys. Res.: Solid Earth 100 (B5): 8267–8283. https://doi.org/10.1029/94JB00937.
Chang, K. J., and A. Taboada. 2009. “Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan.” J. Geophys. Res. Earth Surf. 114: F03003.
Chang, S. B., and S. M. Zhang. 2007. Hand book of engineering geology, 169–170. 4th ed. Beijing: China architecture & Building Press.
Cleary P. W., and C. S. Campbell. 1993. “Self-lubrication for long-runout landslides: Examination by computer simulations.” J. Geophys. Res. 98: 21911–21924.
Crosta, G. B., H. Chen, and C. F. Lee. 2004. “Replay of the 1987 Val Pola Landslide, Italian Alps.” Geomorphology 60 (1–2): 127–146. https://doi.org/10.1016/j.geomorph.2003.07.015.
Crosta, G. B., P. Frattini, and N. Fusi. 2007. “Fragmentation in the Val Pola rock avalanche, Italian Alps.” J. Geophys. Res. 112: F01006. https://doi.org/10.1029/2005JF000455.
Davies, T. R. H. 1982. “Spreading of rock avalanche debris by mechanical fluidization.” Rock Mech. 15 (1): 9–24. https://doi.org/10.1007/BF01239474.
Davies, T. R. H., and M. J. McSaveney. 1999. “Runout of dry granular avalanches.” Can. Geotech. J. 36: 313–320.
Davies, T. R. H., and M. J. McSaveney. 2009. “The role of rock fragmentation in the motion of large landslides.” Eng. Geol. 109 (1–2): 67–79. https://doi.org/10.1016/j.enggeo.2008.11.004.
Davies, T. R. H., M. J. McSaveney, and K. A. Hodgson. 1999. “A fragmentation spreading model for long-runout rock avalanches.” Can. Geotech. J. 36 (6): 1096–1110. https://doi.org/10.1139/t99-067.
De Blasio, F. V., and A. Elverhøi. 2008. “A model for frictional melt production beneath large rock avalanches.” J. Geophys. Res. 113: F02014. https://doi.org/10.1029/2007JF000867.
Dufresne, A., T. R. Davies, and M. J. McSaveney. 2010. “Influence of runout-path material on emplacement of the Round Top rock avalanche, New Zealand.” Earth Surf. Processes Landforms 35 (2): 190–201. https://doi.org/10.1002/esp.1900.
Dunning, S. A., W. A. Mitchell, N. J. Rosser, and D. N. Petley. 2007. “The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir earthquake of 8 October 2005.” Eng. Geol. 93 (3–4): 130–144. https://doi.org/10.1016/j.enggeo.2007.07.003.
Eisbacher, G. H. 1979. “Cliff collapse and rock avalanches (sturzstroms) in the Mackenzie Mountains, northwestern Canada.” Can. Geotech. J. 16 (2): 309–334. https://doi.org/10.1139/t79-032.
Erismann, T. H., and G. Abele. 2001. Dynamics of rockslides and rockfalls. Berlin: Springer.
Feng, Z. Y., C. M. Lo, and Q. F. Lin. 2017. “The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods.” Landslides 14 (2): 661–674. https://doi.org/10.1007/s10346-016-0714-6.
Fityus, S. G., A. Giacomini, and O. Buzzi. 2013. “The significance of geology for the morphology of potentially unstable rocks.” Eng. Geol. 162: 43–52. https://doi.org/10.1016/j.enggeo.2013.05.007.
Gao, G., and M. A. Meguid. 2018a. “Modeling the impact of a falling rock cluster on rigid structures.” Int. J. Geomech. 18 (2): 04017141. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001045.
Gao, G., and M. A. Meguid. 2018b. “On the role of sphericity of falling rock clusters—Insights from experimental and numerical investigations.” Landslides 15 (2): 219–232. https://doi.org/10.1007/s10346-017-0874-z.
Gao, G., and M. A. Meguid. 2018c. “Effect of particle shape on the response of geogrid-reinforced systems: Insights from 3D discrete element analysis.” Geotext. Geomembr. 46 (6): 685–698. https://doi.org/10.1016/j.geotexmem.2018.07.001.
Garcia, F. E., and J. D. Bray. 2018. “Distinct element simulations of shear rupture in dilatant granular media.” Int. J. Geomech. 18 (9): 04018111. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001238.
Giacomini, A., O. Buzzi, B. Renard, and G. P. Giani. 2009. “Experimental studies on fragmentation of rock falls on impact with rock surfaces.” Int. J. Rock Mech. Min. Sci. 46 (4): 708–715. https://doi.org/10.1016/j.ijrmms.2008.09.007.
Gong, B., and C. A. Tang. 2017. “Slope-slide simulation with discontinuous deformation and displacement analysis.” Int. J. Geomech. 17 (5): E4016017. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000746.
Habib, P. 1975. “Production of gaseous pore pressure during rock slides.” Rock Mech. 7 (4): 193–197. https://doi.org/10.1007/BF01246865.
Haug, Ø. T., M. Rosenau, K. Leever, and O. Oncken. 2016. “On the energy budgets of fragmenting rockfalls and rockslides: Insights from experiments.” J. Geophys. Res.: Earth Surface 121 (7): 1310–1327. https://doi.org/10.1002/2014JF003406.
Havenith, H. B., and C. Bourdeau. 2010. “Earthquake-induced landslide hazards in mountain regions: A review of case histories from Central Asia. An inaugural lecture to the society.” Geol. Belg. 13 (3): 137–152.
Hoek, E., and E. T. Brown. 1997. “Practical estimates of rock mass strength.” Int. J. Rock Mech. Min. Sci. 34 (8): 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
Hoek, E., P. K. Kaiser, and W. F. Bawden. 2000. Support of underground excavations in hard rock. London: CRC Press.
Hu., X. W., C. Z. Gu, Y. B. Niu, J. X. Liang, C. Pan, J. L. Wu, J. H. Lin, D. C. Chen. 2013. “Debris flow characteristics and movement process of Dayanbeng landslide in Tianquan county triggered by “4·20” Lushan earthquake.” [In Chinese.] J. Sowthwest Jiaotong Univ. 48 (4): 590–598.
Imre, B., J. Laue, and S. M. Springman. 2010. “Fractal fragmentation of rocks within sturzstroms: Insight derived from physical experiments within the ETH geotechnical drum centrifuge.” Granular Matter 12 (3): 267–285. https://doi.org/10.1007/s10035-009-0163-1.
Itasca Consulting Group. 2014. Particle flow code in two dimensions (PFC2D). Minneapolis: Itasca Consulting Group.
Keefer, D. K. 1994. “The importance of earthquake-induced landslides to long term slope erosion and slope-failure hazards in seismically active regions.” Geology 10 (1–4): 265–284. https://doi.org/10.1016/0169-555X(94)90021-3.
Kent, P. E. 1966. “The transport mechanism in catastrophic rock falls.” J. Geol. 74 (1): 79–83. https://doi.org/10.1086/627142.
Li, B., A. Xing, and C. Xu. 2017. “Simulation of a long-runout rock avalanche triggered by the Lushan earthquake in the Tangjia Valley, Tianquan, Sichuan, China.” Eng. Geol. 218: 107–116. https://doi.org/10.1016/j.enggeo.2017.01.007.
Lim, E. W. C. 2010. “Granular Leidenfrost effect in vibrated beds with bumpy surfaces.” Eur. Phys. J. E 32 (4): 365–375. https://doi.org/10.1140/epje/i2010-10637-8.
Locat, P., R. Couture, S. Leroueil, J. Locat, and M. Jaboyedoff. 2006. “Fragmentation energy in rock avalanches.” Can. Geotech. J. 43 (8): 830–851. https://doi.org/10.1139/t06-045.
Ma, G., Y. D. Zhang, W. Zhou, T. T. Ngc, W. Qiao, and C. Xing. 2018. “The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid.” Int. J. Impact Eng. 113: 132–143. https://doi.org/10.1016/j.ijimpeng.2017.11.016.
Ma, G., W. Zhou, X. L. Chang, and M. X. Chen. 2016. “A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method.” Granular Matter 18 (1): 7. https://doi.org/10.1007/s10035-016-0615-3.
Ma, G., W. Zhou, R. A. Regueiro, Q. Wang, and X. L. Chang. 2017. “Modeling the fragmentation of rock grains using computed tomography and combined FDEM.” Powder Technol. 308: 388–397. https://doi.org/10.1016/j.powtec.2016.11.046.
McNamara, S. 2013. “Absorbing boundary conditions for granular acoustics.” In Proc., 3rd Int. Conf. on Particle Based Methods—Fundamentals and Application, PARTICLES 2013, edited by M. Bischoff, E. Oñate, D. R. J. Owen, and P. Wriggers, 80–90. https://upcommons.upc.edu/handle/2117/188316.
McSaveney, M. J. 2002. “Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand.” In Vol. 15 of Catastrophic landslides: Effects, occurrence, and mechanisms: Reviews in engineering geology, edited by S. G. Evans, and J. V. DeGraff, 35–70. Boulder, CO: Geological Society of America.
McSaveney, M. J., and T. Davies. 2009. “Surface energy is not one of the energy losses in rock comminution.” Eng. Geol. 109 (1–2): 109–113. https://doi.org/10.1016/j.enggeo.2008.11.001.
Melosh, H. J. 1986. “The physics of very large landslides.” Acta Mech. 64 (1–2): 89–99. https://doi.org/10.1007/BF01180100.
Meunier, P., N. Hovius, and A. J. Haines. 2007. “Regional patterns of earthquake-triggered landslides and their relation to ground motion.” Geophys. Res. Lett. 34: L20408. https://doi.org/10.1029/2007GL031337.
Mollon, G., V. Richefeu, P. Villard, and D. Daudon. 2012. “Numerical simulation of rock avalanches: Influence of a local dissipative contact model on the collective behavior of granular flows.” J. Geophys. Res.: Earth Surface 117: F02036. https://doi.org/10.1029/2011JF002202.
Pedrazzini, A., M. Jaboyedoff, A. Loye, and M. H. Derron. 2013. “From deep seated slope deformation to rock avalanche: Destabilization and transportation models of the Sierre landslide (Switzerland).” Tectonophysics 605: 149–168. https://doi.org/10.1016/j.tecto.2013.04.016.
Perinotto, H., J. L. Schneider, P. Bachèlery, F. X. L. Bourdonnec, V. Famin, and L. Michon. 2015. “The extreme mobility of debris avalanches: A new model of transport mechanism.” J. Geophys. Res.: Solid Earth 120 (12): 8110–8119. https://doi.org/10.1002/2015JB011994.
Pollet, N., and J. L. M. Schneider. 2004. “Dynamic disintegration processes accompanying transport of the Holocene Flims sturzstrom (Swiss Alps).” Earth Planet. Sci. Lett. 221 (1–4): 433–448. https://doi.org/10.1016/S0012-821X(04)00071-8.
Potyondy, D., and P. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Rosin, P., and E. Rammler. 1933. “Laws governing the fineness of powdered coal.” J. Inst. Fuel. 7: 89–105.
Shen, W. G., T. Zhao, G. B. Crosta, and F. Dai. 2017. “Analysis of impact induced rock fragmentation using a discrete element approach.” Int. J. Rock Mech. Min. Sci. 98: 33–38. https://doi.org/10.1016/j.ijrmms.2017.07.014.
Shen, W. G., T. Zhao, J. Zhao, F. Dai, and G. G. D. Zhou. 2018. “Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses.” Eng. Geol. 241: 86–96. https://doi.org/10.1016/j.enggeo.2018.05.011.
Shreve, R. L. 1968. “Leakage and fluidization in air-layer lubricated avalanches.” Geol. Soc. Am. Bull. 79 (5): 653–658. https://doi.org/10.1130/0016-7606(1968)79[653:LAFIAL]2.0.CO;2.
Stead, D., E. Eberhardt, and J. S. Coggan. 2006. “Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques.” Eng. Geol. 83 (1–3): 217–235. https://doi.org/10.1016/j.enggeo.2005.06.033.
Tang, C., G. Ma, M. Chang, W. Li, D. Zhang, T. Jia, and Z. Zhou. 2015. “Landslides triggered by the 20 April 2013 Lushan earthquake, Sichuan Province, China.” Eng. Geol. 187: 45–55. https://doi.org/10.1016/j.enggeo.2014.12.004.
Tang, C. L., J. C. Hu, M. L. Lin, J. Angelier, C. Y. Lu, Y. C. Chan, and H. T. Chu. 2009. “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation.” Eng. Geol. 106 (1–2): 1–19. https://doi.org/10.1016/j.enggeo.2009.02.011.
Thompson, N., M. R. Bennett, and N. Petford. 2009. “Analyses on granular mass movement mechanics and deformation with distinct element numerical modeling: Implications for large-scale rock and debris avalanches.” Acta Geotech. 4 (4): 233–247. https://doi.org/10.1007/s11440-009-0093-4.
Thornton C., K. K. Yin, and M. J. Adams. 1996. “Numerical simulation of the impact fracture and fragmentation of agglomerates.” J. Phys. D: Appl. Phys. 29: 424–435.
Timár, G., J. Blömer, F. Kun, and H. J. Hermann. 2010. “New universality class for the fragmentation of plastic materials.” Phys. Rev. Lett. 104 (9): 095502. https://doi.org/10.1103/PhysRevLett.104.095502.
Turcotte, D. L. 1986. “Fractals and fragmentation.” J. Geophys. Res. 91 (B2): 1921–1926. https://doi.org/10.1029/JB091iB02p01921.
Utili, S., T. Zhao, and G. T. Houlsby. 2015. “3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power.” Eng. Geol. 186: 3–16. https://doi.org/10.1016/j.enggeo.2014.08.018.
Wang, Y. F., Q. Cheng, and Q. Zhu. 2015. “Surface microscopic examination of quartz grains from rock avalanche basal facies.” Can. Geotech. J. 52 (2): 167–181. https://doi.org/10.1139/cgj-2013-0284.
Wang, Y. F., J. J. Dong, and Q. G. Cheng. 2018. “Normal stress-dependent frictional weakening of large rock avalanche basal facies: Implications for the rock avalanche volume effect.” J. Geophys. Res.: Solid Earth 123 (4): 3270–3282. https://doi.org/10.1002/2018JB015602.
Xu, C., X. Xu, J. B. H. Shyu, M. X. Gao, X. B. Tan, Y. K. Ran, and W. J. Zheng. 2015a. “Landslides triggered by the 20 April 2013 Lushan, China, Mw 6.6 earthquake from field investigations and preliminary analyses.” Landslides 12 (2): 365–385. https://doi.org/10.1007/s10346-014-0546-1.
Xu, C., X. W. Xu, and J. B. H. Shyu. 2015b. “Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013.” Geomorphology 248: 77–92. https://doi.org/10.1016/j.geomorph.2015.07.002.
Yin, Y., F. Wang, and P. Sun. 2009. “Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China.” Landslides 6 (2): 139–152. https://doi.org/10.1007/s10346-009-0148-5.
Yuan, R. M., C. L. Tang, J. C. Hu, and X. W. Xu. 2014. “Mechanism of the Donghekou landslide triggered by the 2008 Wenchuan earthquake revealed by discrete element modeling.” Nat. Hazards Earth Syst. Sci. 14 (5): 1195–1205. https://doi.org/10.5194/nhess-14-1195-2014.
Zhang, M., L. Wu, J. Zhang, and L. Li. 2019. “The 2009 Jiweishan rock avalanche, Wulong, China: deposit characteristics and implications for its fragmentation.” Landslides 16: 893–906. https://doi.org/10.1007/s10346-019-01142-6.
Zhang, M., and Y. P. Yin. 2013. “Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in China.” Eng. Geol. 167: 37–58.
Zhang, M., Y. P. Yin, and M. McSaveney. 2016. “Dynamics of the 2008 earthquake-triggered Wenjiagou Creek rock avalanche, Qingping, Sichuan, China.” Eng. Geol. 200: 75–87. https://doi.org/10.1016/j.enggeo.2015.12.008.
Zhang, N., and T. M. Evans. 2019. “Discrete numerical simulations of torpedo anchor installation in granular soils.” Comput. Geotech. 108: 40–52. https://doi.org/10.1016/j.compgeo.2018.12.013.
Zhao, T., and G. B. Crosta. 2018. “On the dynamic fragmentation and lubrication of coseismic landslides.” J. Geophys. Res.: Solid Earth 123 (11): 9914–9932. https://doi.org/10.1029/2018JB016378.
Zhao, T., G. B. Crosta, S. Utili, and F. V. De Blasio. 2017. “Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses.” J. Geophys. Res.: Earth Surface 122 (3): 678–695. https://doi.org/10.1002/2016JF004060.
Zhou, G. G., and Q. C. Sun. 2013. “Three-dimensional numerical study on flow regimes of dry granular flows by DEM.” Powder Technol. 239: 115–127. https://doi.org/10.1016/j.powtec.2013.01.057.
Zhou, J. W., P. Cui, and X. G. Yang. 2013. “Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake.” J. Asian Earth Sci. 76: 70–84. https://doi.org/10.1016/j.jseaes.2013.08.007.
Zhou, W., Z. Lai, G. Ma, L. Yang, and Y. Chen. 2016. “Effect of base roughness on size segregation in dry granular flows.” Granular Matter 18 (4): 83. https://doi.org/10.1007/s10035-016-0680-7.
Zou, Z. X., H. M. Tang, C. R. Xiong, A. J. Su, and E. R. Criss. 2017. “Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China.” Geomorphology 295: 1–15. https://doi.org/10.1016/j.geomorph.2017.06.012.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 20Issue 9September 2020

History

Received: Oct 1, 2019
Accepted: Apr 28, 2020
Published online: Jul 8, 2020
Published in print: Sep 1, 2020
Discussion open until: Dec 8, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Student, Civil Engineering and Applied Mechanics, McGill Univ., 817 Sherbrooke St. W., Montreal, QC H3A 0C3. ORCID: https://orcid.org/0000-0001-5405-5590. Email: [email protected]
Professor, Civil Engineering and Applied Mechanics, McGill Univ., 817 Sherbrooke St. W., Montreal, QC H2A 0C3 (corresponding author). ORCID: https://orcid.org/0000-0002-5559-194X. Email: [email protected]
Luc E. Chouinard, Sc.D. [email protected]
Associate Professor, Civil Engineering and Applied Mechanics, McGill Univ., 817 Sherbrooke St. W., Montreal, QC H2A 0C3. Email: [email protected]
Researcher, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China. ORCID: https://orcid.org/0000-0002-3956-4925. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share