Technical Papers
Feb 7, 2020

Dilatancy and Critical State of Calcareous Sand Incorporating Particle Breakage

Publication: International Journal of Geomechanics
Volume 20, Issue 4

Abstract

Particle breakage has a crucial impact on the dilatancy and critical state of calcareous sand. This study performed several triaxial experiments on calcareous sand samples to describe the stress–dilatancy relationship of calcareous sand. The experimental results revealed that critical friction angle always is lower than the mobilized friction angle for calcareous sand. The shear resistance correlates with dilatancy and particle breakage. In addition, particle breakage highly affected the critical state line in the conducted tests. By introducing the concept of breakage parameters, this study established a modified dilatancy equation considering particle breakage under the theoretical framework of state parameters. The experimental results of this study exhibited a good correlation with the model results employing unique parameters.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data of this study are available from the corresponding author upon request.

Acknowledgments

This study was supported and funded by the National Natural Science Foundation of China (No. 41272334).

References

Abriak, N., and A. Mahboubi. 1992. Influenve du frottement local sur le frottement global. Lyon, France: Insa Lyon.
Alshibli, K. A., and M. B. Cil. 2018. “Influence of particle morphology on the friction and dilatancy of sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001841.
Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Bauer, E. 1996. “Calibration of a comprehensive hypoplastic model for granular materials.” Soils Found. 36 (1): 13–26. https://doi.org/10.3208/sandf.36.13.
Bauer, E., and W. Wu. 1993. “A hypoplastic model for granular soils under cyclic loading.” In Proc., Int. Workshop on Modelling Approaches to Plasticity, edited by D. Kolymbas, 247–258. Amsterdam, Netherlands: Elsevier.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Biarez, J., and P. Y. Hicher. 1997. “Influence of grading and grain breakage induced grading change on the mechanical behavior of granular materials.” French J. Civ. Eng. 1 (4): 607–631.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Brandes, H. G. 2011. “Simple shear behavior of calcareous and quartz sands.” Geotech. Geol. Eng. 29 (1): 113–126. https://doi.org/10.1007/s10706-010-9357-x.
Charles, J. A., and K. S. Watts. 1980. “The influence of confining pressure on the shear strength of compacted rockfill.” Géotechnique 30 (4): 353–367. https://doi.org/10.1680/geot.1980.30.4.353.
Chavez, C., and E. E. Alonso. 2003. “A constitutive model for crushed granular aggregates which includes suction effects.” Soils Found. 43 (4): 215–227. https://doi.org/10.3208/sandf.43.4_215.
Chen, X. B., and J. S. Zhang. 2016. “Influence of relative density on dilatancy of clayey sand-fouled aggregates in large-scale triaxial tests.” J. Geotech. Geoenviron. Eng. 142 (10): 06016011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001542.
Cheng, Y. P., M. D. Bolton, and Y. Nakata. 2005. “Grain crushing and critical states observed in DEM simulations.” In Vol. 2 of Proc., 5th Int. Conf. on Powers and Grains 2005, Micromechanics of Granular Media, 1393–1397. Boca Raton, FL: CRC Press.
Chi, M. J., C. G. Zhao, and X. J. Li. 2008. “Research on constitutive model for dilatant sand.” Rock Soil Mech. 29 (11): 2939–2944. https://doi.org/10.16285/j.rsm.2008.11.021.
Chi, S. C., and Y. F. Jia. 2005. “Rowe’s stress-dilatancy model modified for energy dissipation of particle breakage.” Chin. J. Geotech. Eng. 27 (11): 1266–1269.
Ciantia, M. O., M. Arroyo, C. O’Sullivan, A. Gens, and T. Liu. 2019. “Grading evolution and critical state in a discrete numerical model of Fontainebleau sand.” Géotechnique 69 (1): 1–15. https://doi.org/10.1680/jgeot.17.P.023.
Coop, M. R. 1990. “The mechanics of uncemented carbonate sands.” Géotechnique 40 (4): 607–626. https://doi.org/10.1680/geot.1990.40.4.607.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Cresswell, A., and W. Powrie. 2004. “Triaxial tests on an unbonded locked sand.” Géotechnique 54 (2): 107–115. https://doi.org/10.1680/geot.2004.54.2.107.
Dafalias, Y. F., and M. T. Manzari. 2004. “Simple plasticity sand model accounting for fabric change effects.” J. Eng. Mech. 130 (6): 622–634. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622).
Daouadji, A., P. Y. Hicher, and A. Rahma. 2001. “An elastoplastic model for granular materials taking into account grain breakage.” Eur. J. Mech. A. Solids 20 (1): 113–137. https://doi.org/10.1016/S0997-7538(00)01130-X.
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Fourie, A. B., and G. Papageorgiou. 2001. “Defining an appropriate steady state line for Merriespruit gold tailings.” Can. Geotech. J. 38 (4): 695–706. https://doi.org/10.1139/t00-111.
Ghafghazi, M., D. A. Shuttle, and J. T. Dejong. 2014. “Particle breakage and the critical state of sand.” Soils Found. 54 (3): 451–461. https://doi.org/10.1016/j.sandf.2014.04.016.
Guo, P., and X. Su. 2007. “Shear strength, interparticle locking, and dilatancy of granular materials.” Can. Geotech. J. 44 (5): 579–591. https://doi.org/10.1139/t07-010.
Hagerty, M. M., D. R. Hite, C. R. Ullrich, and D. J. Hagerty. 1993. “One-dimensional high-pressure compression of granular media.” J. Geotech. Eng. 119 (1): 1–18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1).
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Hassanlourad, M., H. Salehzadeh, and H. Shahnazari. 2008. “Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects.” Int. J. Civ. Eng. 6 (2): 108–119.
Hu, W., Z. Y. Yin, D. Christophe, and P. Y. Hicher. 2011. “A constitutive model for granular materials considering grain breakage.” Sci. China Technol. Sci. 54 (8): 2188–2196. https://doi.org/10.1007/s11431-011-4491-0.
Indraratna, B., D. Ionescu, and H. D. Christie. 1998. “Shear behaviour of railway ballast based on large scale triaxial testing.” J. Geotech. Geoenviron. Eng. 124 (5): 439–449. https://doi:10.1061/(asce)1090-0241(1998)124:5(439).
Indraratna, B., and W. Salim. 2002. “Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy.” Proc. Inst. Civ. Eng. London 155 (4): 243–252. https://doi.org/10.1680/geng.2002.155.4.243.
Indraratna, B., Q. Sun, and S. Nimbalkar. 2015. “Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage.” Can. Geotech. J. 52 (1): 73–86. https://doi.org/10.1139/cgj-2013-0361.
Ishihara, K., M. Cubrinovski, and T. Nonaka. 1998. “Characterization of undrained behaviour of soils in the reclaimed area of Kobe.” Soils Found. 38 (Special 3): 33–46. https://doi.org/10.3208/sandf.38.Special_33.
Jafarian, Y., A. Ghorbani, S. Salamatpoor, and S. Salamatpoor. 2013. “Monotonic triaxial experiments to evaluate steady-state and liquefaction susceptibility of Babolsar sand.” J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.) 14 (10): 739–750. https://doi.org/10.1631/jzus.A1300032.
Jia, Y. F., B. Xu, S. C. Chi, B. Xiang, and Y. Zhou. 2017. “Research on the particle breakage of rockfill materials during triaxial tests.” Int. J. Geomech. 17 (10): 04017085. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000977.
Kamai, R., and R. W. Boulanger. 2012. “Single-element simulations of partial-drainage effects under monotonic and cyclic loading.” Soil Dyn. Earthquake Eng. 35 (Apr): 29–40. https://doi.org/10.1016/j.soildyn.2011.10.002.
Kan, M. E., and H. A. Taiebat. 2014. “A bounding surface plasticity model for highly crushable granular materials.” Soils Found. 54 (6): 1188–1201. https://doi.org/10.1016/j.sandf.2014.11.012.
Karimpour, H., and P. V. Lade. 2010. “Time effects relate to crushing in sand.” J. Geotech. Geoenviron. Eng. 136 (9): 1209–1219. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000335.
Kikumoto, M., D. M. Wood, and A. Russell. 2010. “Particle crushing and deformation behaviour.” Soils Found. 50 (4): 547–563. https://doi.org/10.3208/sandf.50.547.
Koerner, R. M. 1970. “Effect of particle characteristics on soil strength.” J. Soil Mech. Found. Eng. Div. 96 (SM4): 1221–1234. https://doi.org/10.1016/0022-4898(71)90051-6.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16 (3): 50. https://doi.org/10.1016/0148-9062(79)90502-3.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Lancelot, L., I. Shahrour, and M. A. Mahmoud. 2006. “Failure and dilatancy properties of sand at relatively low stresses.” J. Eng. Mech. 132 (12): 1396–1399. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:12(1396).
Lashkari, A. 2009. “On the modeling of the state dependency of granular soils.” Comput. Geotech. 36 (7): 1237–1245. https://doi.org/10.1016/j.compgeo.2009.06.003.
Lee, K. L., and I. Farhoomand. 1967. “Compressibility and crushing of granular soil in anisotropic triaxial compression.” Can. Geotech. J. 4 (1): 68–86. https://doi.org/10.1139/t67-012.
Lee, K. L., and H. B. Seed. 1967. “Drained characteristics of sands.” J. Soil Mech. Found. Div. 93 (SM6): 117–141.
Leps, T. M. 1970. “Review of shearing strength of rockfill.” J. Soil Mech. Found. Div. 96 (4): 1159–1170.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Li, X. S., and Y. F. Dafalias. 2012. “Anisotropic critical state theory: Role of fabric.” J. Eng. Mech. 138 (3): 263–275. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324.
Li, X. S., and Y. Wang. 1998. “Linear representation of steady-state line for sand.” J. Geotech. Geoenviron. Eng. 124 (12): 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215).
Liu, E. L., S. S. Chen, G. Y. Li, and Q. M. Zhong. 2011. “Critical state of rockfill materials and a constitutive model considering grain crushing.” Rock Soil Mech. 32 (2): 128–154.
Liu, E. L., Y. L. Tan, S. S. Chen, and G. Y. Li. 2012. “Investigation on critical state of rockfill materials.” J. Hydraul. Eng. 42 (5): 505–511.
Liu, M. C., and Y. F. Gao. 2016. “Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity.” Int. J. Geomech. 17 (5): 04016113. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759.
Liu, M. C., Y. F. Gao, and H. L. Liu. 2014. “An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage.” Int. J. Numer. Anal. Methods Geomech. 38 (9): 935–960. https://doi.org/10.1002/nag.2243.
Lu, Y., G. Q. Zhou, and H. D. Gu. 2016. “Experimental study of strength and deformation characteristics of sand under different pressures.” Chin. J. Rock Mech. Eng. 35 (11): 2369–2376. https://doi.org/10.13722/j.cnki.jrme.2016.0273.
Manzari, M. T., and Y. F. Dafalias. 1997. “A critical state two-surface plasticity model for sands.” Géotechnique 47 (2): 255–272. https://doi.org/10.1680/geot.1997.47.2.255.
Marsal, R. J. 1967. “Large-scale testing of rockfills materials.” J. Soil Mech. Found. Eng. 93 (2): 27–44.
Nakata, Y., A. F. L. Hyde, M. Hyodo, and H. Murata. 1999. “A probabilistic approach to sand particle crushing in the triaxial test.” Géotechnique 49 (5): 567–583. https://doi.org/10.1680/geot.1999.49.5.567.
Nakata, Y., Y. Kato, M. Hyodo, A. F. L. Hyde, and H. Murata. 2001. “One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength.” Soils Found. 41 (2): 39–51. https://doi.org/10.3208/sandf.41.2_39.
Nouguier-Lehon, C. 2010. “Effect of the grain elongation on the behaviour of granular materials in biaxial compression.” C. R. Mec. 338 (10–11): 587–595. https://doi.org/10.1016/j.crme.2010.10.005.
Reynolds, O. 1885. “On the dilatancy of media composed of rigid particles in contact, with experimental illustrations.” London Edinburgh Dublin Philos. Mag. J. Sci. 20 (127): 468–481. https://doi.org/10.1080/14786448508627791.
Roscoe, K. H., A. N. Schofield, and A. Thurairajah. 1963. “Yield of clays in states wetter than critical.” Géotechnique 13 (3): 211–240. https://doi.org/10.1680/geot.1963.13.3.211.
Roscoe, K. H., A. N. Schofield, and C. P. Wroth. 1958. “On the yielding of soils.” Géotechnique 8 (1): 22–53. https://doi.org/10.1680/geot.1958.8.1.22.
Rowe, P. W. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. R. Soc. London Ser. A 269 (1339): 500–527. https://doi.org/10.1098/rspa.1962.0193.
Salim, W., and B. Indraratna. 2004. “A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage.” Can. Geotech. J. 41 (4): 657–671. https://doi.org/10.1139/t04-025.
Schofield, A. N., and C. P. Wroth. 1968. Critical state soil mechanics. London: McGraw-Hill Book.
Shahnazari, H., and R. Rezvani. 2013. “Effective parameters for the particle breakage of calcareous sands: An experimental study.” Eng. Geol. 159 (Jun): 98–105. https://doi.org/10.1016/j.enggeo.2013.03.005.
Skinner, A. E. 1969. “A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particle.” Géotechnique 19 (1): 150–157. https://doi.org/10.1680/geot.1969.19.1.150.
Sukumaran, B., and A. K. Ashmawy. 2001. “Quantitative characterisation of the geometry of discrete particles.” Géotechnique 51 (7): 619–627. https://doi.org/10.1680/geot.2001.51.7.619.
Sun, H. Z., and M. S. Huang. 2010. “Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage.” Chin. J. Geotech. Eng. 32 (8): 1284–1290.
Takei, M., O. Kusakabe, and T. Hayashi. 2001. “Time-dependent behavior of crushable materials in one-dimensional compression tests.” Soils Found. 41 (1): 97–121. https://doi.org/10.3208/sandf.41.97.
Varadarajan, A., K. G. Sharma, K. Venkatachalam, and A. K. Gupta. 2003. “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng. 129 (3): 206–218. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(206).
Vesic, A. S., and G. W. Clough. 1968. “Behavior of granular materials under high stresses.” J. Soil Mech. Found. Div. 94 (SM3): 661–688. https://doi.org/10.1016/0022-4898(68)90104-3.
Vilhar, G., V. Jovicic, and M. R. Coop. 2013. “The role of particle breakage in the mechanics of a non-plastic silty sand.” Soils Found. 53 (1): 91–104. https://doi.org/10.1016/j.sandf.2012.12.006.
Wan, R. G., and P. J. Guo. 1998. “A simple constitutive model for granular soils: modified stress-dilatancy approach.” Comput. Geotech. 22 (2): 109–133. https://doi.org/10.1016/S0266-352X(98)00004-4.
Wang, Z. L., Y. F. Dafalias, X. S. Li, and F. I. Makdisi. 2002. “State pressure index for modeling sand behavior.” J. Geotech. Geoenviron. Eng. 128 (6): 511–519. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511).
Wood, D. M. 2007. “The magic of sands—The 20th Bjerrum lecture presented in Oslo, 25 November 2005.” Can. Geotech. J. 44 (11): 1329–1350. https://doi.org/10.1139/T07-060.
Wood, D. M., and K. Maeda. 2008. “Changing grading of soil: Effect on critical states.” Acta Geotech. 3 (1): 3–14. https://doi.org/10.1007/s11440-007-0041-0.
Xiao, Y., and H. L. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. L. Liu, Y. M. Chen, and J. S. Jiang. 2014a. “Bounding surface plasticity model incorporating the state pressure index for rockfill materials.” J. Eng. Mech. 140 (11): 04014087. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000802.
Xiao, Y., H. L. Liu, Y. M. Chen, and J. S. Jiang. 2014b. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: Influences of density and pressure.” J. Geotech. Geoenviron. Eng. 140 (12): 04014070. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001176.
Xiao, Y., H. L. Liu, Y. M. Chen, J. S. Jiang, and W. G. Zhang. 2014c. “Testing and modeling of the state-dependent behavior of rockfill material.” Comput. Geotech. 61 (Sep): 153–165. https://doi.org/10.1016/j.compgeo.2014.05.009.
Xiao, Y., H. L. Liu, J. G. Zhu, and W. C. Shi. 2012. “Modeling and behaviours of rockfill materials in three-dimensional stress space.” Sci. China Tech. Sci. 55 (10): 2877–2892. https://doi.org/10.1007/s11431-012-4979-2.
Xiao, Y., M. Q. Meng, A. Daouadjie, Q. S. Chen, Z. J. Wu, and X. Jiang. 2019a. “Effect of particle size on crushing and deformation behaviors of rockfill materials.” Geosci. Front. https://doi.org/10.1016/j.gsf.2018.1010.1010.
Xiao, Y., L. Wang, X. Jiang, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019c. “Acoustic emission and force drop in grain crushing of carbonate sands.” J. Geotech. Geoenviron. Eng. 145 (9): 04019057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002141.
Xiao, Y., Y. Wang, C. S. Desai, X. Jiang, and H. Liu. 2019b. “Strength and deformation responses of biocemented sands using a temperature-controlled method.” Int. J. Geomech. 19 (11): 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497.
Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019d. “Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression.” Acta Geotech. 14 (6): 1741–1755. https://doi.org/10.1007/s11440-019-00790-1.
Yamamuro, J. A., and P. V. Lade. 1996. “Drained sand behavior in axisymmetric tests at high pressures.” J. Geotech. Eng. 122 (2): 109–119. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(109).
Yang, Z. X., J. Yang, and X. S. Li. 2008. “Quantifying and modelling fabric anisotropy of granular soils.” Géotechnique 58 (4): 237–248. https://doi.org/10.1680/geot.2008.58.4.237.
Yu, F. W. 2017. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Zhang, W. H., C. G. Zhao, and F. Fu. 2013. “Bounding-surface constitutive model for saturated sands based on phase transformation state.” Chin. J. Geotech. Eng. 35 (5): 930–939. https://doi.org/10.11776/cjam.32.05.B083.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 20Issue 4April 2020

History

Received: Apr 20, 2019
Accepted: Sep 20, 2019
Published online: Feb 7, 2020
Published in print: Apr 1, 2020
Discussion open until: Jul 7, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Civil Engineering and Architecture, Wuhan Univ. of Technology, Wuhan 430070, China (corresponding author). Email: [email protected]
Ph.D. Candidate, School of Civil Engineering and Architecture, Wuhan Univ. of Technology, Wuhan 430070, China. ORCID: https://orcid.org/0000-0003-3079-7260. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share