Technical Papers
Nov 21, 2019

Probabilistic Analysis of Soil-Water Characteristic Curve of Bentonite: Multivariate Copula Approach

Publication: International Journal of Geomechanics
Volume 20, Issue 2

Abstract

Measurement of the soil-water characteristic curve (SWCC) is time-consuming for soils such as bentonites. It is desirable to develop a first-hand estimate of SWCC from a statistical generalization of the available data. A database for SWCCs of bentonite was compiled from the literature. The proposed approach entails the parameterization of SWCCs and constructing a multivariate probability distribution for the SWCC parameters. The choice of parameter constraints has a significant impact on SWCC quantification, which has not been studied for bentonites. Therefore, a database from this study was used to investigate the effect of van Genuchten (vG) model constraints on SWCC parameter statistics of bentonite. The three-parameter vG model with parameters α,n, and m provided the best choice. Subsequently, trivariate probability distributions of parameters α,n, and m were constructed using Gaussian and t copulas. The proposed trivariate copula is suitable for modeling the asymmetric dependence structure of vG parameters. It was demonstrated that the proposed approach can be used to construct the confidence intervals for SWCCs of bentonites. In the absence of measured data, the trivariate distribution provides a first-hand estimate of the SWCC. It also can be used as an informative prior for updating site-specific limited data using a Bayesian approach.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abhijit, D., and S. Sreedeep. 2014. “Evaluation of measurement methodologies used for establishing water retention characteristic curve of fly ash.” J. Test. Eval. 43 (5): 1066–1077. https://doi.org/10.1520/JTE20130091.
Akaike, H. 1974. “A new look at the statistical model identification.” IEEE Trans. Autom. Control 19 (6): 716–723. https://doi.org/10.1109/TAC.1974.1100705.
Alonso, E. E., E. Romero, and C. Hoffmann. 2011. “Hydromechanical behaviour of compacted granular expansive mixtures: Experimental and constitutive study.” Géotechnique 61 (4): 329–344. https://doi.org/10.1680/geot.2011.61.4.329.
Aloui, R., S. Hammoudeh, and D. K. Nguyen. 2013. “A time-varying copula approach to oil and stock market dependence: The case of transition economies.” Energy Econ. 39 (Sep): 208–221. https://doi.org/10.1016/j.eneco.2013.04.012.
Ang, H. S., and W. H. Tang. 2007. Probability concepts in engineering: Emphasis on applications in civil & environmental engineering. New York: Wiley.
Arya, L. M., and J. F. Paris. 1981. “A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data.” Soil Sci. Soc. Am. J. 45 (6): 1023–1030. https://doi.org/10.2136/sssaj1981.03615995004500060004x.
Baille, W., S. Tripathy, and T. Schanz. 2014. “Effective stress in clays of various mineralogy.” Vadose Zone J. 13 (5). https://doi.org/10.2136/vzj2013.06.0112.
Ballarini, E., B. Graupner, and S. Bauer. 2017. “Thermal–hydraulic–mechanical behavior of bentonite and sand-bentonite materials as seal for a nuclear waste repository: Numerical simulation of column experiments.” Appl. Clay Sci. 135 (Jan): 289–299. https://doi.org/10.1016/j.clay.2016.10.007.
Bozdogan, H. 1987. “Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions.” Psychometrika 52 (3): 345–370. https://doi.org/10.1007/BF02294361.
Brooks, R. H., and A. T. Corey. 1964. Hydraulic properties of porous media. Fort Collins, CO: Colorado State Univ.
Burdine, N. 1953. “Relative permeability calculations from pore size distribution data.” J. Pet. Technol. 5 (03): 71–78. https://doi.org/10.2118/225-G.
Carsel, R. F., and R. S. Parrish. 1988. “Developing joint probability distributions of soil water retention characteristics.” Water Resour. Res. 24 (5): 755–769. https://doi.org/10.1029/WR024i005p00755.
Chen, B., L. Qian, W. Ye, Y. Cui, and J. Wang. 2006. “Soil-water characteristic curves of Gaomiaozi bentonite.” Yanshilixue Yu Gongcheng Xuebao/Chinese J. Rock Mech. Eng. 25 (4): 788–793.
Chiu, C. F., W. M. Yan, and K. V. Yuen. 2012. “Reliability analysis of soil–water characteristics curve and its application to slope stability analysis.” Eng. Geol. 135 (May): 83–91. https://doi.org/10.1016/j.enggeo.2012.03.004.
Cornelis, W. M., M. Khlosi, R. Hartmann, M. Van Meirvenne, and B. De Vos. 2005. “Comparison of unimodal analytical expressions for the soil-water retention curve.” Soil Sci. Soc. Am. J. 69 (6): 1902–1911. https://doi.org/10.2136/sssaj2004.0238.
Czado, C. 2010. “Pair-copula constructions of multivariate copulas.” In Copula theory and its applications, 93–109. Berlin: Springer.
Dai, Z., J. Samper, A. Wolfsberg, and D. Levitt. 2008. “Identification of relative conductivity models for water flow and solute transport in unsaturated bentonite.” Phys. Chem. Earth Parts A/B/C 33 (Jan): S177–S185. https://doi.org/10.1016/j.pce.2008.10.012.
Dieudonne, A. C., G. Della Vecchia, and R. Charlier. 2017. “Water retention model for compacted bentonites.” Can. Geotech. J. 54 (7): 915–925. https://doi.org/10.1139/cgj-2016-0297.
Embrechts, P., F. Lindskog, and A. McNeil. 2001. Modelling dependence with copulas. Zurich, Switzerland: Institut Fédéral de Technologie de Zurich.
Fang, H. B., K. T. Fang, and S. Kotz. 2002. “The meta-elliptical distributions with given marginals.” J. Multivariate Anal. 82 (1): 1–16. https://doi.org/10.1006/jmva.2001.2017.
Fang, Y., L. Madsen, and L. Liu. 2014. “Comparison of two methods to check copula fitting.” Int. J. Appl. Math. 44 (1): 53–61.
Favre, A. C., S. El Adlouni, L. Perreault, N. Thiémonge, and B. Bobée. 2004. “Multivariate hydrological frequency analysis using copulas.” Water Resour. Res. 40 (1): W01101. https://doi.org/10.1029/2003WR002456.
Fredlund, D. G., and A. Xing. 1994. “Equations for the soil-water characteristic curve.” Can. Geotech. J. 31 (4): 521–532. https://doi.org/10.1139/t94-061.
Gallipoli, D. 2012. “A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio.” Geotechnique 62 (7): 605. https://doi.org/10.1680/geot.11.P.007.
Gardner, W. R. 1958. “Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table.” Soil Sci. 85 (4): 228–232. https://doi.org/10.1097/00010694-195804000-00006.
Gatabin, C., J. Talandier, F. Collin, R. Charlier, and A. C. Dieudonné. 2016. “Competing effects of volume change and water uptake on the water retention behaviour of a compacted MX-80 bentonite/sand mixture.” Appl. Clay Sci. 121 (Mar): 57–62. https://doi.org/10.1016/j.clay.2015.12.019.
Gates, W. P., A. Bouazza, and G. J. Churchman. 2009. “Bentonite clay keeps pollutants at bay.” Elements 5 (2): 105–110. https://doi.org/10.2113/gselements.5.2.105.
Genest, C., and A. C. Favre. 2007. “Everything you always wanted to know about copula modeling but were afraid to ask.” J. Hydrol. Eng. 12 (4): 347–368. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347).
Genest, C., A. C. Favre, J. Béliveau, and C. Jacques. 2007. “Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data.” Water Resour. Res. 43 (9): W09401. https://doi.org/10.1029/2006WR005275.
Genest, C., K. Ghoudi, and L. P. Rivest. 1995. “A semiparametric estimation procedure of dependence parameters in multivariate families of distributions.” Biometrika 82 (3): 543–552. https://doi.org/10.1093/biomet/82.3.543.
Genest, C., B. Rémillard, and D. Beaudoin. 2009. “Goodness-of-fit tests for copulas: A review and a power study.” Insurance: Math. Econ. 44 (2): 199–213. https://doi.org/10.1016/j.insmatheco.2007.10.005.
Gitipour, S., M. T. Bowers, and A. Bodocsi. 1997. “The use of modified bentonite for removal of aromatic organics from contaminated soil.” J. Colloid Interface Sci. 196 (2): 191–198. https://doi.org/10.1006/jcis.1997.5063.
Hökmark, H. 2004. “Hydration of the bentonite buffer in a KBS-3 repository.” Appl. Clay Sci. 26 (1–4): 219–233. https://doi.org/10.1016/j.clay.2003.12.034.
Huang, S., S. L. Barbour, and D. G. Fredlund. 1998. “Development and verification of a coefficient of permeability function for a deformable unsaturated soil.” Can. Geotech. J. 35 (3): 411–425. https://doi.org/10.1139/t98-010.
Joe, H., and D. Kurowicka. eds. 2011. Dependence modeling: Vine copula handbook. Singapore: World Scientific.
Kao, S. C., and R. S. Govindaraju. 2008. “Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas.” Water Resour. Res. 44 (2): W02415. https://doi.org/10.1029/2007WR006261.
Kayabali, K. 1997. “Engineering aspects of a novel landfill liner material: Bentonite-amended natural zeolite.” Eng. Geol. 46 (2): 105–114. https://doi.org/10.1016/S0013-7952(96)00102-0.
Khalili, N., M. A. Habte, and S. Zargarbashi. 2008. “A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses.” Comput. Geotech. 35 (6): 872–889. https://doi.org/10.1016/j.compgeo.2008.08.003.
Kovács, G. 1981. Developments in water science—Seepage hydraulics. Amsterdam, Netherlands: Elsevier.
Kullback, S., and R. A. Leibler. 1951. “On information and sufficiency.” Ann. Math. Statistics 22 (1): 79–86. https://doi.org/10.1214/aoms/1177729694.
Kumar, S., and W. L. Yong. 2002. “Effect of bentonite on compacted clay landfill barriers.” Soil Sediment Contam. 11 (1): 71–89. https://doi.org/10.1080/20025891106709.
Lehmann, E. L., and G. Casella. 2006. Theory of point estimation. New York: Springer.
Li, D. Q., X. S. Tang, K. K. Phoon, Y. F. Chen, and C. B. Zhou. 2013. “Bivariate simulation using copula and its application to probabilistic pile settlement analysis.” Int. J. Numer. Anal. Methods Geomech. 37 (6): 597–617. https://doi.org/10.1002/nag.1112.
Li, D. Q., L. Zhang, X. S. Tang, W. Zhou, J. H. Li, C. B. Zhou, and K. K. Phoon. 2015. “Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability.” Comput. Geotech. 68 (Jul): 184–195. https://doi.org/10.1016/j.compgeo.2015.04.002.
Likos, W. J., and J. Yao. 2014. “Effects of constraints on van Genuchten parameters for modeling soil-water characteristic curves.” J. Geotech. Geoenviron. Eng. 140 (12): 06014013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001168.
Linde, A. 2005. “DIC in variable selection.” Stat. Neerl. 59 (1): 45–56. https://doi.org/10.1111/j.1467-9574.2005.00278.x.
Ling, W., Q. Shen, Y. Gao, X. Gu, and Z. Yang. 2008. “Use of bentonite to control the release of copper from contaminated soils.” Soil Res. 45 (8): 618–623. https://doi.org/10.1071/SR07079.
Lloret, A., E. Romero, and M. V. Villar. 2004. FEBEX II project final report on thermo-hydro-mechanical laboratory tests. Madrid, Spain: Centro De Investigaciones Energeticas.
Massey, F. J., Jr. 1951. “The Kolmogorov-Smirnov test for goodness of fit.” J. Am. Stat. Assoc. 46 (253): 68–78.
Mbonimpa, M., M. Aubertin, R. P. Chapuis, and B. Bussière. 2002. “Practical pedotransfer functions for estimating the saturated hydraulic conductivity.” Geotech. Geol. Eng. 20 (3): 235–259. https://doi.org/10.1023/A:1016046214724.
Mbonimpa, M., M. Aubertin, A. Maqsoud, and B. Bussière. 2006. “Predictive model for the water retention curve of deformable clayey soils.” J. Geotech. Geoenviron. Eng. 132 (9): 1121–1132. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1121).
Mualem, Y. 1976. “A new model for predicting the hydraulic conductivity of unsaturated porous media.” Water Resour. Res. 12 (3): 513–522. https://doi.org/10.1029/WR012i003p00513.
Nelsen, R. B. 2007. An introduction to copulas. New York: Springer.
Nemes, A. D., M. G. Schaap, F. J. Leij, and J. H. M. Wösten. 2001. “Description of the unsaturated soil hydraulic database UNSODA version 2.0.” J. Hydrol. 251 (3–4): 151–162. https://doi.org/10.1016/S0022-1694(01)00465-6.
Nuth, M., and L. Laloui. 2008. “Advances in modelling hysteretic water retention curve in deformable soils.” Comput. Geotech. 35 (6): 835–844. https://doi.org/10.1016/j.compgeo.2008.08.001.
Osinubi, K. J., and A. A. Amadi. 2009. Hydraulic performance of compacted lateritic soil-bentonite mixtures permeated with municipal solid waste landfill leachate. Washington, DC: Transporation Research Board.
Patton, A. H. 2002. “Applications of copula theory in financial econometrics.” Ph.D. thesis, Dept. of Economics, Univ. of California, San Diego.
Patton, A. J. 2009. “Copula–based models for financial time series.” In Handbook of financial time series, 767–785. Berlin: Springer.
Phoon, K. K., A. Santoso, and S. T. Quek. 2010. “Probabilistic analysis of soil-water characteristic curves.” J. Geotech. Geoenviron. Eng. 136 (3): 445–455. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000222.
Prakash, A., S. Bordoloi, B. Hazra, A. Garg, and W. Qinhua. 2019. “Probabilistic analysis of soil suction and crack intensity in fiber reinforced soil under drying-wetting cycles: An experimental and copula modeling approach.” Environ. Geotech. 6 (4): 188–203. https://doi.org/10.1680/jenge.18.00067.
Prakash, A., B. Hazra, A. Deka, and S. Sreedeep. 2017. “Probabilistic analysis of water retention characteristic curve of fly ash.” Int. J. Geomech. 17 (12): 04017111. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001024.
Prakash, A., B. Hazra, and S. Sreedeep. 2018a. “Probabilistic analysis of unsaturated fly ash slope.” J. Hazard. Toxic Radioactive Waste 23 (1): 06018002. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000428.
Prakash, A., B. Hazra, and S. Sreedeep. 2018b. “Uncertainty quantification in water retention characteristic curve of fly ash using copulas.” J. Test. Eval. 47 (4): 3080–3102. https://doi.org/10.1520/JTE20170244.
Rahimi, S., and S. Siddiqua. 2017. “Relationships between degree of saturation, total suction, and electrical and thermal resistivity of highly compacted bentonite.” J. Hazard. Toxic Radioactive Waste 22 (2): 04017025. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000380.
Raj Singh, S., A. Prakash, A. Garg, B. Hazra, and G. Kumar Das. 2018. “Stochastic modeling of relative permeability for vegetated covers.” Int. J. Geomech. 18 (9): 06018020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001244.
Ravi, K., and S. M. Rao. 2013. “Influence of infiltration of sodium chloride solutions on SWCC of compacted bentonite–sand specimens.” Geotech. Geol. Eng. 31 (4): 1291–1303. https://doi.org/10.1007/s10706-013-9650-6.
Rizzi, M., A. Seiphoori, A. Ferrari, D. Ceresetti, and L. Laloui. 2011. “Analysis of the behaviour of the granular MX-80 bentonite in THM-processes.” Lausanne Swiss Fed. Inst. Technol. Orders 7: 928.
Salvadori, G., and C. De Michele. 2007. “On the use of copulas in hydrology: Theory and practice.” J. Hydrol. Eng. 12 (4): 369–380. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(369).
Schaap, M. G., F. J. Leij, and M. T. Van Genuchten. 2001. “Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions.” J. Hydrol. 251 (3–4): 163–176. https://doi.org/10.1016/S0022-1694(01)00466-8.
Schwarz, G. 1978. “Estimating the dimension of a model.” Ann. Stat. 6 (2): 461–464. https://doi.org/10.1214/aos/1176344136.
Schweizer, B., and E. F. Wolff. 1981. “On nonparametric measures of dependence for random variables.” Ann. Stat. 9 (4): 879–885. https://doi.org/10.1214/aos/1176345528.
Seber, G. A. F., and C. J. Wild. 2003. Nonlinear regression. Hoboken, NJ: Wiley-Interscience.
Seiphoori, A., A. Ferrari, and L. Laloui. 2014. “Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles.” Géotechnique 64 (9): 721–734. https://doi.org/10.1680/geot.14.P.017.
Shih, J. H., and T. A. Louis. 1995. “Inferences on the association parameter in copula models for bivariate survival data.” Biometrics 51 (4): 1384–1399. https://doi.org/10.2307/2533269.
Sillers, W. S., and D. G. Fredlund. 2001. “Statistical assessment of soil-water characteristic curve models for geotechnical engineering.” Can. Geotech. J. 38 (6): 1297–1313. https://doi.org/10.1139/t01-066.
Sklar, M. 1959. “Fonctions de repartition an dimensions et leurs marges.” Publ. Inst. Stat. Univ. Paris 8: 229–231.
Song, S., and V. P. Singh. 2010. “Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data.” Stochastic Environ. Res. Risk Assess. 24 (3): 425–444. https://doi.org/10.1007/s00477-009-0331-1.
Tang, X. S., D. Q. Li, G. Rong, K. K. Phoon, and C. B. Zhou. 2013. “Impact of copula selection on geotechnical reliability under incomplete probability information.” Comput. Geotech. 49 (Apr): 264–278. https://doi.org/10.1016/j.compgeo.2012.12.002.
Tang, X. S., D. Q. Li, C. B. Zhou, and K. K. Phoon. 2015. “Copula-based approaches for evaluating slope reliability under incomplete probability information.” Struct. Saf. 52 (Jan): 90–99. https://doi.org/10.1016/j.strusafe.2014.09.007.
Thakur, V. K., S. Sreedeep, and D. N. Singh. 2006. “Evaluation of various pedo-transfer functions for developing soil-water characteristic curve of a silty soil.” Geotech. Test. J. 30 (1): 25–30. https://doi.org/10.1520/GTJ100455.
Tripathy, S., M. Y. M. Tadza, and H. R. Thomas. 2014. “Soil-water characteristic curves of clays.” Can. Geotech. J. 51 (8): 869–883. https://doi.org/10.1139/cgj-2013-0089.
Tripathy, S., H. R. Thomas, and R. Bag. 2015. “Geoenvironmental application of bentonites in underground disposal of nuclear waste: Characterization and laboratory tests.” J. Hazard. Toxic Radioact. Waste 21 (1): D4015002. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000272.
Trivedi, P. K., and D. M. Zimmer. 2007. “Copula modeling: An introduction for practitioners.” Found. Trends Econ. 1 (1): 1–111. https://doi.org/10.1520/GTJ100455.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Villar, M. V. 2002. “Thermo-hydro-mechanical characterisation of a bentonite from Cabo de Gata A study applied to the use of bentonite as sealing material in high level radioactive waste repositories.” Publicación técnica (Empresa Nacional Residuos Radiactivos) 4 (Jan): 15–258.
Villar, M. V. 2005. MX-80 bentonite. Thermo-hydro-mechanical characterisation performed at CIEMAT in the context of the Prototype Project. Madrid, Spain: Informes Técnicos CIEMAT.
Villar, M. V., and A. Lloret. 2004. “Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite.” Appl. Clay Sci. 26 (1–4): 337–350. https://doi.org/10.1016/j.clay.2003.12.026.
Villar, M. V., M. Sánchez, and A. Gens. 2008. “Behaviour of a bentonite barrier in the laboratory: Experimental results up to 8 years and numerical simulation.” Phys. Chem. Earth Parts A/B/C 33 (Jan): S476–S485. https://doi.org/10.1016/j.pce.2008.10.055.
Wheeler, S. J., R. S. Sharma, and M. S. R. Buisson. 2003. “Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils.” Géotechnique 53 (1): 41–54. https://doi.org/10.1680/geot.2003.53.1.41.
Wösten, J. H. M., Y. A. Pachepsky, and W. J. Rawls. 2001. “Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics.” J. Hydrol. 251 (3–4): 123–150. https://doi.org/10.1016/S0022-1694(01)00464-4.
Wu, X. Z. 2013a. “Probabilistic slope stability analysis by a copula-based sampling method.” Comput. Geosci. 17 (5): 739–755. https://doi.org/10.1007/s10596-013-9353-3.
Wu, X. Z. 2013b. “Trivariate analysis of soil ranking-correlated characteristics and its application to probabilistic stability assessments in geotechnical engineering problems.” Soils Found. 53 (4): 540–556. https://doi.org/10.1016/j.sandf.2013.06.006.
Zhai, Q., and H. Rahardjo. 2013. “Quantification of uncertainties in soil–water characteristic curve associated with fitting parameters.” Eng. Geol. 163 (Aug): 144–152. https://doi.org/10.1016/j.enggeo.2013.05.014.
Zhang, L., and V. P. Singh. 2007. “Trivariate flood frequency analysis using the Gumbel–Hougaard copula.” J. Hydrol. Eng. 12 (4): 431–439. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(431).
Zhang, L., and V. P. Singh. 2014. “Trivariate flood frequency analysis using discharge time series with possible different lengths: Cuyahoga river case study.” J. Hydrol. Eng. 19 (10): 05014012. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001003.
Zhang, L. L., L. M. Zhang, and W. H. Tang. 2003. “Importance of considering correlations among. parameters of soil-water characteristic curve.” Vol 1 and 2 of Applications of statistics and probability in civil engineering. Rotterdam, Netherlands: Millpress.
Zhao, J., L. Chen, F. Collin, Y. Liu, and J. Wang. 2016. “Numerical modeling of coupled thermal-hydro-mechanical behavior of GMZ bentonite in the China-Mock-up test.” Eng. Geol. 214 (Nov): 116–126. https://doi.org/10.1016/j.enggeo.2016.09.015.
Zhou, A. N., D. Sheng, and J. P. Carter. 2012. “Modelling the effect of initial density on soil-water characteristic curves.” Géotechnique 62 (8): 669. https://doi.org/10.1680/geot.10.P.120.
Zhu, Z., D. A. Sun, A. Zhou, and Z. Qiu. 2016. “Calibration of two filter papers at different temperatures and its application to GMZ bentonite.” Environ. Earth Sci. 75 (6): 50. https://doi.org/10.1007/s12665-015-5117-9.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 20Issue 2February 2020

History

Received: Jun 15, 2018
Accepted: Jun 12, 2019
Published online: Nov 21, 2019
Published in print: Feb 1, 2020
Discussion open until: Apr 21, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Atma Prakash [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India. Email: [email protected]
Budhaditya Hazra [email protected]
Associate Professor, Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India. Email: [email protected]
Sreedeep Sekharan, Aff.M.ASCE [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share