Technical Papers
Feb 11, 2020

Three-Dimensional Discrete-Element Modeling of Geocell-Reinforced Ballast Considering Breakage

Publication: International Journal of Geomechanics
Volume 20, Issue 4

Abstract

This paper presents a three-dimensional discrete-element method (DEM) study examining the settlement and breakage behavior of geocell-reinforced ballast. The reinforced ballast chamber reproduced the geocell in configuration and the ballast particles in shape and breakage characteristics. The reinforced ballast chamber was subjected to monotonic and cyclic loads. Parametric studies were conducted on the geocell embedment depth and ballast shape. For each case, ballast settlement, geocell responses, and ballast breakage behavior were evaluated. This study demonstrates that the geocell can effectively reduce settlement and ballast breakage. The geocell stiffens its embedded layer and reduces stress propagation into the underlying layer.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are proprietary or confidential in nature and may only be provided with restrictions.

References

ARTC (Australian Rail Track Corporation). 2007. Ballast specification. Mile End, Australia: ARTC.
ARTC (Australian Rail Track Corporation). 2012. Engineering (track & civil) code of practice—Section 4 ballast. Mile End, Australia: ARTC.
ARTC (Australian Rail Track Corporation). 2014. Route access standard: General information. Mile End, Australia: ARTC.
ARTC (Australian Rail Track Corporation). 2017. Engineering (track & civil) code of practice—Section 2 sleepers and fastenings. Mile End, Australia: ARTC.
ARTC (Australian Rail Track Corporation). 2018. Common interface requirements WOS 01.200: WOS 01.211—Wheels, design and manufacture. Mile End, Australia: ARTC.
ASTM. 2004. Standard test method for tensile properties of plastics. ASTM D638-03. West Conshohocken, PA: ASTM.
Chen, C., G. R. McDowell, and N. H. Thom. 2012. “Discrete element modelling of cyclic loads of geogrid-reinforced ballast under confined and unconfined conditions.” Geotext. Geomembr. 35: 76–86. https://doi.org/10.1016/j.geotexmem.2012.07.004.
Chen, C., G. R. McDowell, and N. H. Thom. 2013a. “A study of geogrid-reinforced ballast using laboratory pull-out tests and discrete element modelling.” Geomech. Geoeng. 8 (4): 244–253. https://doi.org/10.1080/17486025.2013.805253.
Chen, R.-H., Y.-W. Huang, and F.-C. Huang. 2013b. “Confinement effect of geocells on sand samples under triaxial compression.” Geotext. Geomembr. 37: 35–44. https://doi.org/10.1016/j.geotexmem.2013.01.004.
Chen, R.-H., C.-P. Wu, F.-C. Huang, and C.-W. Shen. 2013c. “Numerical analysis of geocell-reinforced retaining structures.” Geotext. Geomembr. 39: 51–62. https://doi.org/10.1016/j.geotexmem.2013.07.003.
Cundall, P. A. 2001. “A discontinuous future for numerical modelling in geomechanics?” Proc. Inst. Civ. Eng. Geotech. Eng. 149 (1): 41–47. https://doi.org/10.1680/geng.2001.149.1.41.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Dash, S. K. 2012. “Effect of geocell type on load-carrying mechanisms of geocell-reinforced sand foundations.” Int. J. Geomech. 12 (5): 537–548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162.
Dash, S. K., and M. C. Bora. 2013. “Improved performance of soft clay foundations using stone columns and geocell-sand mattress.” Geotext. Geomembr. 41: 26–35. https://doi.org/10.1016/j.geotexmem.2013.09.001.
Hegde, A., and T. G. Sitharam. 2015a. “3-dimensional numerical modelling of geocell reinforced sand beds.” Geotext. Geomembr. 43 (2): 171–181. https://doi.org/10.1016/j.geotexmem.2014.11.009.
Hegde, A. M., and T. G. Sitharam. 2015b. “Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets.” Can. Geotech. J. 52 (9): 1396–1407. https://doi.org/10.1139/cgj-2014-0387.
Hossain, Z., B. Indraratna, F. Darve, and P. K. Thakur. 2007. “DEM analysis of angular ballast breakage under cyclic loading.” Geomech. Geoeng. 2 (3): 175–181. https://doi.org/10.1080/17486020701474962.
Huang, H., E. Tutumluer, and W. Dombrow. 2009. “Laboratory characterization of fouled railroad ballast behavior.” Transp. Res. Rec. 2117 (1): 93–101. https://doi.org/10.3141/2117-12.
Indraratna, B., N. T. Ngo, C. Rujikiatkamjorn, and J. S. Vinod. 2014. “Behavior of fresh and fouled railway ballast subjected to direct shear testing: Discrete element simulation.” Int. J. Geomech. 14 (1): 34–44. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000264.
Indraratna, B., S. Nimbalkar, D. Christie, C. Rujikiatkamjorn, and J. S. Vinod. 2010a. “Field assessment of the performance of a ballasted rail track with and without geosynthetics.” J. Geotech. Geoenviron. Eng. 136 (7): 907–917. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000312.
Indraratna, B., P. K. Thakur, and J. S. Vinod. 2010b. “Experimental and numerical study of railway ballast behavior under cyclic loading.” Int. J. Geomech. 10 (4): 136–144. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000055.
Indraratna, B., J. S. Vinod, and J. Lackenby. 2009. “Influence of particle breakage on the resilient modulus of railway ballast.” Geotechnique 59 (7): 643–646. https://doi.org/10.1680/geot.2008.T.005.
Irazábal, J., F. Salazar, and E. Oñate. 2017. “Numerical modelling of granular materials with spherical discrete particles and the bounded rolling friction model. Application to railway ballast.” Supplement, Comput. Geotech. 85 (SC): 220–229. https://doi.org/10.1016/j.compgeo.2016.12.034.
Itasca. 2008. PFC3D: Particle flow code in 3 dimensions. Minneapolis: Itasca.
Itasca. 2009. Particle flow code in three dimensions version 4. Minneapolis: Itasca.
Leshchinsky, B., and H. Ling. 2013a. “Effects of geocell confinement on strength and deformation behavior of gravel.” J. Geotech. Geoenviron. Eng. 139 (2): 340–352. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000757.
Leshchinsky, B., and H. I. Ling. 2013b. “Numerical modeling of behavior of railway ballasted structure with geocell confinement.” Geotext. Geomembr. 36: 33–43. https://doi.org/10.1016/j.geotexmem.2012.10.006.
Li, H., and G. R. McDowell. 2018. “Discrete element modelling of under sleeper pads using a box test.” Granular Matter 20 (2): 26. https://doi.org/10.1007/s10035-018-0795-0.
Lim, W. L., and G. R. McDowell. 2005. “Discrete element modelling of railway ballast.” Granular Matter 7 (1): 19–29. https://doi.org/10.1007/s10035-004-0189-3.
Liu, Y., A. Deng, and M. Jaksa. 2015. “Discrete element modelling of geocell-reinforced track ballast under static and cyclic loading.” In Proc., 12th Australia–New Zealand Conf. on Geomechanics, 279–286. Wellington, NZ: New Zealand Geotechnical Society.
Liu, Y., A. Deng, and M. Jaksa. 2018. “Three-dimensional modeling of geocell-reinforced straight and curved ballast embankments.” Comput. Geotech. 102: 53–65. https://doi.org/10.1016/j.compgeo.2018.05.011.
Lobo-Guerrero, S., and L. E. Vallejo. 2006. “Discrete element method analysis of railtrack ballast degradation during cyclic loading.” Granular Matter 8 (3–4): 195–204. https://doi.org/10.1007/s10035-006-0006-2.
Lu, M., and G. R. McDowell. 2006. “The importance of modelling ballast particle shape in the discrete element method.” Granular Matter 9 (1–2): 69–80. https://doi.org/10.1007/s10035-006-0021-3.
Lu, M., and G. R. McDowell. 2008. “Discrete element modelling of railway ballast under triaxial conditions.” Geomech. Geoeng. 3 (4): 257–270. https://doi.org/10.1080/17486020802485289.
Lu, M., and G. R. McDowell. 2010. “Discrete element modelling of railway ballast under monotonic and cyclic triaxial loading.” Géotechnique 60 (6): 459–467. https://doi.org/10.1680/geot.2010.60.6.459.
Madhavi Latha, G., and K. Rajagopal. 2007. “Parametric finite element analyses of geocell-supported embankments.” Can. Geotech. J. 44 (8): 917–927. https://doi.org/10.1139/T07-039.
Mehdipour, I., M. Ghazavi, and R. Z. Moayed. 2013. “Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect.” Geotext. Geomembr. 37: 23–34. https://doi.org/10.1016/j.geotexmem.2013.01.001.
Ngo, N. T., B. Indraratna, and C. Rujikiatkamjorn. 2014. “DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal.” Comput. Geotech. 55: 224–231. https://doi.org/10.1016/j.compgeo.2013.09.008.
Ngo, N. T., B. Indraratna, and C. Rujikiatkamjorn. 2017. “Simulation ballasted track behavior: Numerical treatment and field application.” Int. J. Geomech. 17 (6): 04016130. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000831.
Ngo, N. T., B. Indraratna, C. Rujikiatkamjorn, and M. Mahdi Biabani. 2015. “Experimental and discrete element modeling of geocell-stabilized subballast subjected to cyclic loading.” J. Geotech. Geoenviron. Eng. 142 (4): 04015100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001431.
Oliaei, M., and S. Kouzegaran. 2017. “Efficiency of cellular geosynthetics for foundation reinforcement.” Geotext. Geomembr. 45: 11–22. https://doi.org/10.1016/j.geotexmem.2016.11.001.
Potyondy, D. O., and P. A. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Qian, Y., D. Mishra, E. Tutumluer, and H. A. Kazmee. 2015. “Characterization of geogrid reinforced ballast behavior at different levels of degradation through triaxial shear strength test and discrete element modeling.” Geotext. Geomembr. 43 (5): 393–402. https://doi.org/10.1016/j.geotexmem.2015.04.012.
Sadeghi, J. M. 2008. “Experimental evaluation of accuracy of current practices in analysis and design of railway track sleepers.” Can. J. Civ. Eng. 35 (9): 881–893. https://doi.org/10.1139/L08-026.
Satyal, S. R., B. Leshchinsky, J. Han, and M. Neupane. 2018. “Use of cellular confinement for improved railway performance on soft subgrades.” Geotext. Geomembr. 46 (2): 190–205. https://doi.org/10.1016/j.geotexmem.2017.11.006.
Selig, E. T., and J. M. Waters. 1994. Track geotechnology and substructure management. London: Thomas Telford.
Standards Australia. 2015. Aggregates and rock for engineering purposes—Part 7: Railway ballast. AS 2758.7. Sydney, Australia: Standards Australia.
Sun, Y., and C. Zheng. 2017. “Breakage and shape analysis of ballast aggregates with different size distributions.” Particuology 35: 84–92. https://doi.org/10.1016/j.partic.2017.02.004.
Tafreshi, S. M., T. Shaghaghi, G. Tavakoli Mehrjardi, A. R. Dawson, and M. Ghadrdan. 2015. “A simplified method for predicting the settlement of circular footings on multi-layered geocell-reinforced non-cohesive soils.” Geotext. Geomembr. 43 (4): 332–344. https://doi.org/10.1016/j.geotexmem.2015.04.006.
Taghavi, R. 2011. “Automatic clump generation based on mid-surface.” In Proc., Continuum and Distinct Element Numerical Modeling in Geomechanics. Minneapolis: ITASCA Consulting Group.
Tanyu, B. F., A. H. Aydilek, A. W. Lau, T. B. Edil, and C. H. Benson. 2013. “Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades.” Geosynthetics Int. 20 (2): 47–61. https://doi.org/10.1680/gein.13.00001.
Tutumluer, E., Y. Qian, Y. M. A. Hashash, J. Ghaboussi, and D. D. Davis. 2013. “Discrete element modelling of ballasted track deformation behaviour.” Int. J. Rail Transp. 1 (1–2): 57–73. https://doi.org/10.1080/23248378.2013.788361.
Wang, B., U. Martin, and S. Rapp. 2017. “Discrete element modeling of the single-particle crushing test for ballast stones.” Comput. Geotech. 88: 61–73. https://doi.org/10.1016/j.compgeo.2017.03.007.
Wang, C., A. Deng, and A. Taheri. 2018. “Three-dimensional discrete element modeling of direct shear test for granular rubber–sand.” Comput. Geotech. 97: 204–216. https://doi.org/10.1016/j.compgeo.2018.01.014.
Wang, Y. H., and S. C. Leung. 2008. “A particulate-scale investigation of cemented sand behavior.” Can. Geotech. J. 45 (1): 29–44. https://doi.org/10.1139/T07-070.
Wang, Z., F. Jacobs, and M. Ziegler. 2016. “Experimental and DEM investigation of geogrid–soil interaction under pullout loads.” Geotext. Geomembr. 44 (3): 230–246. https://doi.org/10.1016/j.geotexmem.2015.11.001.
Xu, M., J. Hong, and E. Song. 2017. “DEM study on the effect of particle breakage on the macro- and micro-behavior of rockfill sheared along different stress paths.” Supplement, Comput. Geotech. 89 (SC): 113–127. https://doi.org/10.1016/j.compgeo.2017.04.012.
Yan, Y., J. Zhao, and S. Ji. 2014. “Discrete element analysis of breakage of irregularly shaped railway ballast.” Geomech. Geoeng. 10 (1): 1–9. https://doi.org/10.1080/17486025.2014.933891.
Yang, X., J. Han, R. L. Parsons, and D. Leshchinsky. 2010. “Three-dimensional numerical modeling of single geocell-reinforced sand.” Front. Archit. Civ. Eng. China 4 (2): 233–240. https://doi.org/10.1007/s11709-010-0020-7.
Yang, X., J. Han, S. K. Pokharel, C. Manandhar, R. L. Parsons, D. Leshchinsky, and I. Halahmi. 2012. “Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases.” Geotext. Geomembr. 32: 95–103. https://doi.org/10.1016/j.geotexmem.2011.10.004.
Zhang, L., M. Zhao, C. Shi, and H. Zhao. 2010. “Bearing capacity of geocell reinforcement in embankment engineering.” Geotext. Geomembr. 28 (5): 475–482. https://doi.org/10.1016/j.geotexmem.2009.12.011.
Zhang, Q., H. Zhu, L. Zhang, and X. Ding. 2011. “Study of scale effect on intact rock strength using particle flow modeling.” Int. J. Rock Mech. Min. Sci. 48 (8): 1320–1328. https://doi.org/10.1016/j.ijrmms.2011.09.016.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 20Issue 4April 2020

History

Received: Oct 23, 2018
Accepted: Jun 12, 2019
Published online: Feb 11, 2020
Published in print: Apr 1, 2020
Discussion open until: Jul 11, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Liu, Ph.D. [email protected]
Graduate, School of Civil, Environmental, and Mining Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia (corresponding author). Email: [email protected]
Senior Lecturer, Lecturer of Geotechnical Engineering, School of Civil, Environmental, and Mining Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. ORCID: https://orcid.org/0000-0002-3897-9803. Email: [email protected]
Professor of Geotechnical Engineering, School of Civil, Environmental, and Mining Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. ORCID: https://orcid.org/0000-0003-3756-2915. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share