Technical Papers
Sep 12, 2019

Strength and Surviving Probability in Grain Crushing under Acidic Erosion and Compression

Publication: International Journal of Geomechanics
Volume 19, Issue 11

Abstract

Single-grain crushing tests were carried out on limestone with nominal particle sizes of 2.5, 5, and 10 mm to investigate the effect of particle size and acidic erosion on grain strength, characteristic stress, and probability of survival. The characteristic stress at failure was calculated when the particles were broken. The data showed that in addition to nominal particle size, acidity and soaking time played significant roles in determining the strength of a particle. The Weibull distribution theory was applied to calculate the Weibull modulus and the surviving probability of grain crushing. The results revealed that the Weibull modulus decreased with increasing acidity and soaking time, and the test data were accurately described by the Weibull distribution. In addition, the average failure force was well predicted by the equation incorporating the grain size and acidic erosion effect.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge financial support from the 111 Project (grant B13024), the National Science Foundation of China (grants 51509024, 51678094, and 51578096), the Fundamental Research Funds for the Central Universities (grant 106112017CDJQJ208848), and the China Postdoctoral Science Foundation (grant 2017T100681).

References

Anderson, W. F., and P. Fair. 2008. “Behavior of railroad ballast under monotonic and cyclic loading.” J. Geotech. Geoenviron. Eng. 134 (3): 316–327. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(316).
Casini, F., G. M. B. Viggiani, and S. M. Springman. 2013. “Breakage of an artificial crushable material under loading.” Granul. Matter 15 (5): 661–673. https://doi.org/10.1007/s10035-013-0432-x.
Charles, J. A., and K. S. Watts. 1980. “The influence of confining pressure on the shear strength of compacted rockfill.” Géotechnique 30 (4): 353–367. https://doi.org/10.1680/geot.1980.30.4.353.
Cheshomi, A., and E. A. Sheshde. 2013. “Determination of uniaxial compressive strength of microcrystalline limestone using single particles load test.” J. Pet. Sci. Eng. 111: 121–126. https://doi.org/10.1016/j.petrol.2013.10.015.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Ciantia, M. O., M. Arroyo, C. O'Sullivan, A. Gens, and T. Liu. 2019. “Grading evolution and critical state in a discrete numerical model of Fontainebleau sand.” Géotechnique 69 (1): 1–15. https://doi.org/10.1680/jgeot.17.P.023.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Diamantis, K., E. Gartzos, and G. Migiros. 2009. “Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from central Greece: Test results and empirical relations.” Eng. Geol. 108 (3–4): 199–207. https://doi.org/10.1016/j.enggeo.2009.07.002.
Dunning, J., B. Douglas, M. Miller, and S. McDonald. 1994. “The role of the chemical environment in frictional deformation: Stress corrosion cracking and comminution.” Pure Appl. Geophys. 143 (1–3): 151–178. https://doi.org/10.1007/BF00874327.
Eyssautier-Chuine, S., B. Marin, C. Thomachot-Schneider, G. Fronteau, A. Schneider, S. Gibeaux, and P. Vazquez. 2016. “Simulation of acid rain weathering effect on natural and artificial carbonate stones.” Environ. Earth Sci. 75 (9): 1–19. https://doi.org/10.1007/s12665-016-5555-z.
Feng, X., S. Chen, and S. Li. 2001. “Effects of water chemistry on microcracking and compressive strength of granite.” Int. J. Rock Mech. Min. Sci. 38 (4): 557–568. https://doi.org/10.1016/S1365-1609(01)00016-8.
Feng, X., and W. Ding. 2007. “Experimental study of limestone micro-fracturing under a coupled stress, fluid flow and changing chemical environment.” Int. J. Rock Mech. Min. Sci. 44 (3): 437–448. https://doi.org/10.1016/j.ijrmms.2006.07.012.
Feucht, L. J., and J. M. Logan. 1990. “Effects of chemically active solutions on shearing behavior of a sandstone.” Tectonophysics 175 (1–3): 159–176. https://doi.org/10.1016/0040-1951(90)90136-V.
Fu, Z., S. Chen, and C. Peng. 2014. “Modeling cyclic behavior of rockfill materials in a framework of generalized plasticity.” Int. J. Geomech. 14 (2): 191–204. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000302.
Genç, Ö., L. Ergün, and H. Benzer. 2004. “Single particle impact breakage characterization of materials by drop weight testing.” Physicochem. Probl. Miner. Process. 38: 241–255.
Guida, G., M. Bartoli, F. Casini, and G. M. B. Viggiani. 2016. “Weibull distribution to describe grading evolution of materials with crushable grains.” Procedia Eng. 158: 75–80. https://doi.org/10.1016/j.proeng.2016.08.408.
Han, T., J. Shi, Y. Chen, and X. Cao. 2018. “Quantifying microstructural damage of sandstone after hydrochemical corrosion.” Int. J. Geomech. 18 (10): 04018121. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001237.
Honkanadavar, N. P., and K. G. Sharma. 2014. “Testing and modeling the behavior of riverbed and blasted quarried rockfill materials.” Int. J. Geomech. 14 (6): 04014028. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000378.
Huang, J., S. Xu, and S. Hu. 2015. “The role of contact friction in the dynamic breakage behavior of granular materials.” Granul. Matter 17 (1): 111–120. https://doi.org/10.1007/s10035-014-0543-z.
Huang, J., S. Xu, H. Yi, and S. Hu. 2014. “Size effect on the compression breakage strengths of glass particles.” Powder Technol. 268 (1): 86–94. https://doi.org/10.1016/j.powtec.2014.08.037.
Indraratna, B., J. Lackenby, and D. Christie. 2005. “Effect of confining pressure on the degradation of ballast under cyclic loading.” Géotechnique 55 (4): 325–328. https://doi.org/10.1680/geot.2005.55.4.325.
Indraratna, B., P. K. Thakur, and J. S. Vinod. 2010. “Experimental and numerical study of railway ballast behavior under cyclic loading.” Int. J. Geomech. 10 (4): 136–144. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000055.
Jaeger, J. C. 1967. “Failure of rocks under tensile conditions.” Int. J. Rock Mech. Min. Sci. Geomech. Admin. 4 (2): 219–227. https://doi.org/10.1016/0148-9062(67)90046-0.
Jayatilaka, A. D. S., and K. Trustrum. 1977. “Statistical approach to brittle fracture.” J. Mater. Sci. 12 (7): 1426–1430. https://doi.org/10.1007/BF00540858.
Jia, Y., B. Xu, S. Chi, B. Xiang, and Y. Zhou. 2017. “Research on the particle breakage of rockfill materials during triaxial tests.” Int. J. Geomech. 17 (10): 04017085. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000977.
Kato, A., Y. Nakata, M. Hyodo, and N. Yoshimoto. 2016. “Macro and micro behaviour of methane hydrate-bearing sand subjected to plane strain compression.” Soils Found. 56 (5): 835–847. https://doi.org/10.1016/j.sandf.2016.08.008.
Keleş, Ö., R. E. García, and K. J. Bowman. 2013. “Deviations from Weibull statistics in brittle porous materials.” Acta Mater. 61 (19): 7207–7215. https://doi.org/10.1016/j.actamat.2013.08.025.
Lim, W. L., G. R. McDowell, and A. C. Collop. 2004. “The application of Weibull statistics to the strength of railway ballast.” Granul. Matter 6 (4): 229–237.
Liu, H., Y. Chen, T. Yu, and G. Yang. 2015. “Seismic analysis of the Zipingpu concrete-faced rockfill dam response to the 2008 Wenchuan, China, earthquake.” J. Perform. Constr. Facil. 29 (5): 04014129. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000506.
Liu, M., and Y. Gao. 2017. “Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity.” Int. J. Geomech. 17 (5): 04016113. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759.
Lobo-Guerrero, S., and L. E. Vallejo. 2006. “Application of Weibull statistics to the tensile strength of rock aggregates.” J. Geotech. Geoenviron. Eng. 132 (6): 786–790. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:6(786).
Lobo-Guerrero, S., L. E. Vallejo, and L. F. Vesga. 2006. “Visualization of crushing evolution in granular materials under compression using DEM.” Int. J. Geomech. 6 (3): 195–200. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:3(195).
Madjoubi, M. A., C. Bousbaa, M. Hamidouche, and N. Bouaouadja. 1999. “Weibull statistical analysis of the mechanical strength of a glass eroded by sand blasting.” J. Eur. Ceram. Soc. 19 (16): 2957–2962. https://doi.org/10.1016/S0955-2219(99)00087-4.
Mao, W., Y. Yang, W. Lin, S. Aoyama, and I. Towhata. 2018. “High frequency acoustic emissions observed during model pile penetration in sand and implications for particle breakage behavior.” Int. J. Geomech. 18 (11): 04018143. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001287.
McDowell, G. R. 2002. “On the yielding and plastic compression of sand.” Soils Found. 42 (1): 139–145. https://doi.org/10.3208/sandf.42.139.
McDowell, G. R., and A. Amon. 2000. “The application of Weibull statistics to the fracture of soil particles.” Soils Found. 40 (5): 133–141. https://doi.org/10.3208/sandf.40.5_133.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Géotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
McDowell, G. R., and J. P. De Bono. 2013. “On the micro mechanics of one-dimensional normal compression.” Géotechnique 63 (11): 895–908. https://doi.org/10.1680/geot.12.P.041.
Nakata, A. F. L., M. Hyde, H. Hyodo, and Murata. 1999. “A probabilistic approach to sand particle crushing in the triaxial test.” Géotechnique 49 (5): 567–583. https://doi.org/10.1680/geot.1999.49.5.567.
Nakata, Y., Y. Kato, A. F. L. Hyodo, and H. Murata. 2001. “One-dimensional compression behaviour of uniformly graded and related to single particle crushing strength.” Soils Found. 41 (2): 39–51. https://doi.org/10.3208/sandf.41.2_39.
Navaratnarajah, S. K., B. Indraratna, and N. T. Ngo. 2018. “Influence of under sleeper pads on ballast behavior under cyclic loading: Experimental and numerical studies.” J. Geotech. Geoenviron. Eng. 144 (9): 04018068. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001954.
Ovalle, C., E. Frossard, C. Dano, W. Hu, S. Maiolino, and P. Y. Hicher. 2014. “The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data.” Acta Mech. 225 (8): 2199–2216. https://doi.org/10.1007/s00707-014-1127-z.
Pan, X.-H., Q.-Q. Xiong, and Z.-J. Wu. 2018. “New method for obtaining the homogeneity index m of Weibull distribution using peak and crack-damage strains.” Int. J. Geomech. 18 (6): 04018034. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001146.
Peiris, L. M. N., S. P. G. Madabhushi, and A. N. Schofield. 2008. “Centrifuge modeling of rock-fill embankments on deep loose saturated sand deposits subjected to earthquakes.” J. Geotech. Geoenviron. Eng. 134 (9): 1364–1374. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1364).
Qiao, L., Z. Wang, and A. Huang. 2017. “Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and hydro-chemical effects.” Rock Mech. Rock Eng. 50 (2): 255–267. https://doi.org/10.1007/s00603-016-1111-0.
Stefanou, I., and J. Sulem. 2016. “Existence of a threshold for brittle grains crushing strength: Two-versus three-parameter Weibull distribution fitting.” Granul. Matter 18 (2): 1–10. https://doi.org/10.1007/s10035-015-0603-z.
Tang, C. A., H. Liu, P. K. K. Lee, Y. Tsui, and L. G. Tham. 2000. “Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: Effect of heterogeneity.” Int. J. Rock Mech. Min. Sci. 37 (4): 555–569. https://doi.org/10.1016/S1365-1609(99)00121-5.
Tapias, M., E. E. Alonso, and J. a. Gili. 2015. “A particle model for rockfill behaviour.” Géotechnique 65 (12): 975–994. https://doi.org/10.1680/jgeot.14.P.170.
Tejchman, J., J. Górski, and I. Einav. 2012. “Effect of grain crushing on shear localization in granular bodies during plane strain compression.” Int. J. Numer. Anal. Meth. Geomech. 36 (18): 1909–1931. https://doi.org/10.1002/nag.1079.
Todisco, M. C., W. Wang, M. R. Coop, and K. Senetakis. 2017. “Multiple contact compression tests on sand particles.” Soils Found. 57 (1): 126–140. https://doi.org/10.1016/j.sandf.2017.01.009.
Trustrum, K., and A. D. S. Jayatilaka. 1979. “On estimating the Weibull modulus for a brittle material.” J. Mater. Sci. 14 (5): 1080–1084. https://doi.org/10.1007/BF00561290.
Unland, G., and Y. Al-Khasawneh. 2009. “The influence of particle shape on parameters of impact crushing.” Miner. Eng. 22 (3): 220–228. https://doi.org/10.1016/j.mineng.2008.08.008.
Varadarajan, A., K. G. Sharma, S. M. Abbas, and A. K. Dhawan. 2006. “Constitutive model for rockfill materials and determination of material constants.” Int. J. Geomech. 6 (4): 226–237. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:4(226).
Varadarajan, A., K. G. Sharma, K. Venkatachalam, and A. K. Gupta. 2003. “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng. 129 (3): 206–218. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(206.
Wang, W., and M. R. Coop. 2016. “An investigation of breakage behaviour of single sand particles using a high-speed microscope camera.” Géotechnique 66 (12): 984–998. https://doi.org/10.1680/jgeot.15.P.247.
Wang, W., and M. R. Coop. 2018. “Breakage behaviour of sand particles in point-load compression.” Geotech. Lett. 8 (1): 61–65. https://doi.org/10.1680/jgele.17.00155.
Wang, Y., C. Shao, and Y. Xu. 2017. “Fractal crushing of solid particles.” KSCE J. Civ. Eng. 21 (3): 987–993. https://doi.org/10.1007/s12205-016-0508-3.
Wei, H., T. Zhao, J. He, Q. Meng, and X. Wang. 2018. “Evolution of particle breakage for calcareous sands during ring shear tests.” Int. J. Geomech. 18 (2): 04017153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001073.
Weibull, W. 1951. “A statistical distribution function of wide applicability.” J. Appl. Mech. 18 (2): 293–297.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, Q. Chen, L. Long, and J. Xiang. 2017a. “Evolution of particle breakage and volumetric deformation of binary granular soils under impact load.” Granul. Matter 19 (4): 71. https://doi.org/10.1007/s10035-017-0756-z.
Xiao, Y., H. Liu, Q. Chen, Q. Ma, Y. Xiang, and Y. Zheng. 2017b. “Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process.” Acta Geotech. 12 (5): 1177–1184. https://doi.org/10.1007/s11440-017-0580-y.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: Influence of particle breakage.” J. Geotech. Geoenviron. Eng. 140 (12): 04014071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001177.
Xiao, Y., H. Liu, C. S. Desai, Y. Sun, and H. Liu. 2016a. “Effect of intermediate principal-stress ratio on particle breakage of rockfill material.” J. Geotech. Geoenviron. Eng. 142 (4): 06015017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001433.
Xiao, Y., H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Wengang Zhang. 2016b. “Influence of particle breakage on critical state line of rockfill material.” Int. J. Geomech. 16 (1): 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
Xiao, Y., L. Long, T. M. Matthew Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., M. Meng, A. Daouadjie, Q. Chen, Z. Wu, and X. Jiang. Forthcoming. “Effect of particle size on crushing and deformation behaviors of rockfill materials.” Geosci. Front. https://doi.org/10.1016/j.gsf.2018.10.010.
Xiao, Y., Z. Yuan, Y. Lv, L. Wang, and H. Liu. 2018. “Fractal crushing of carbonate and quartz sands along the specimen height under impact loading.” Constr. Build. Mater. 182 (9): 188–199. https://doi.org/10.1016/j.conbuildmat.2018.06.112.
Yang, J., and X. D. Luo. 2015. “Exploring the relationship between critical state and particle shape for granular materials.” J. Mech. Phys. Solids 84: 196–213. https://doi.org/10.1016/j.jmps.2015.08.001.
Yang, Z. X., R. J. Jardine, B. T. Zhu, P. Foray, and C. H. C. Tsuha. 2010. “Sand grain crushing and interface shearing during displacement pile installation in sand.” Géotechnique 60 (6): 469–482. https://doi.org/10.1680/geot.2010.60.6.469.
Yu, F. 2017. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Yu, F. 2018. “Particle breakage and the undrained shear behavior of sands.” Int. J. Geomech. 18 (7): 04018079. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001203.
Zangiabadi, B., and S. R. Gomari. 2017. “Systematic evaluation of rock mechanical behavior of chalk reservoirs in the presence of a variety of water compositions.” Int. J. Geomech. 17 (8): 04017040. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000916.
Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Géotechnique 63 (5): 341–354. https://doi.org/10.1680/geot.11.P.117.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 19Issue 11November 2019

History

Received: Jan 15, 2019
Accepted: Apr 12, 2019
Published online: Sep 12, 2019
Published in print: Nov 1, 2019
Discussion open until: Feb 12, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China; Researcher, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China; Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]
Zengchun Sun [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Chandrakant S. Desai, Dist.M.ASCE [email protected]
Regents' Professor (Emeritus), Dept. of Civil Engineering and Engineering Mechanics, Univ. of Arizona, Tucson, AZ 85721. Email: [email protected]
Minqiang Meng [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share