Technical Papers
Jul 24, 2019

Simulation of Liquefaction and Retrogressive Slope Failure in Loose Coarse-Grained Material

Publication: International Journal of Geomechanics
Volume 19, Issue 10

Abstract

Flowslides and retrogressive slope failures are usually triggered from a significant drop of shear strength in loose coarse-grained materials, including static liquefaction and successive large deformations. A 4-step procedure is proposed to model these phenomena using the material point method, together with an advanced constitutive model calibrated via inverse analysis. The numerical simulations are performed for a well-documented flume test, which showed that a flowslide was initiated by toe sliding followed by static liquefaction leading to retrogressive failure. First, an advanced hypoplastic constitutive model is calibrated to simulate the observed mechanical behavior of the representative elementary volume (REV) of soil in triaxial tests. Then, these model parameters are used to simulate the slope instability process observed in the flume test. The simulation of triaxial tests and slope instability are satisfactory and highlight important features about the evolution of pore-water pressure and effective stress in a large deformation slope process.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

All of the numerical simulations including representative elementary volume (REV) and material point method (MPM) modeling were performed using the Anura3D code (http://www.mpm-dredge.eu/). The research was developed within the framework of the Anura3D MPM Research Community.

References

Al-Kafaji, I. 2013. “Formulation of a dynamic material point method (MPM) for geomechanical problems.” Ph.D. thesis, Univ. of Stuttgart.
Bandara, S., and K. Soga. 2015. “Coupling of soil deformation and pore fluid flow using material point method.” Comput. Geotech. 63 (Jan): 199–214. https://doi.org/10.1016/j.compgeo.2014.09.009.
Bauer, E. 1996. “Calibration of a comprehensive hypoplastic model for granular materials.” Soils Found. 36 (1): 13–26. https://doi.org/10.3208/sandf.36.13.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Boulanger, R., R. Arulnathan, L. Harder Jr., R. Torres, and M. Driller. 1998. “Dynamic properties of Sherman Island peat.” J. Geotech. Geoenviron. Eng. 124 (1): 12–20. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(12).
Calvello, M. 2017. “From the observational method to “observational modelling” of geotechnical engineering boundary value problems.” In Geotechnical Safety and Reliability: Honoring Wilson H. Tang, Geotechnical Special Publication 286, edited by C. H. Juang, R. B. Gilbert, L. Zhang, J. Zhang, and L. Zhang, 101–117. Reston, VA: ASCE. https://doi.org/10.1061/9780784480731.
Calvello, M., S. Cuomo, and P. Ghasemi. 2017. “The role of observations in the inverse analysis of landslide propagation.” Comput. Geotech. 92 (Dec): 11–21. https://doi.org/10.1016/j.compgeo.2017.07.011.
Calvello, M., and R. J. Finno. 2004. “Selecting parameters to optimize in model calibration by inverse analysis.” Comput. Geotech. 31 (5): 410–424. https://doi.org/10.1016/j.compgeo.2004.03.004.
Calvello, M., P. Ghasemi, S. Cuomo, and M. Martinelli. 2018. “Optimizing the MPM model of a reduced scale granular flow by inverse analysis.” In Vol. 1 of Numerical methods in geotechnical engineering IX, edited by A. S. Cardoso, J. I. Borges, P. A. Costa, A. T. Gomes, J. C. Marques, and C. S. Vieira, 569–574. London: Taylor & Francis.
Cascini, L., S. Cuomo, M. Pastor, and C. Sacco. 2013. “Modelling the post-failure stage of rainfall-induced landslides of the flow type.” Can. Geotech. J. 50 (9): 924–934. https://doi.org/10.1139/cgj-2012-0375.
Cascini, L., S. Cuomo, M. Pastor, and G. Sorbino. 2010. “Modeling of rainfall-induced shallow landslides of the flow-type.” J. Geotech. Geoenviron. Eng. 136 (1): 85–98. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000182.
Ceccato, F. 2015. “Study of large deformation geomechanical problems with the material point method.” Ph.D. thesis, Univ. of Padova.
Ceccato, F., and P. Simonini. 2016. “Granular flow impact forces on protection structures: MPM numerical simulations with different constitutive models.” Procedia Eng. 158: 164–169. https://doi.org/10.1016/j.proeng.2016.08.423.
Chavez Abril, M. A. 2017. “Numerical simulations of static liquefaction in submerged slopes.” M.Sc. thesis, TU Delft.
Cuomo, S., P. Ghasemi, M. Calvello, and V. Hosseinnezhad. 2018a. “Hypoplastic model and inverse analysis for simulation of triaxial tests.” In Vol. 1 of Numerical methods in geotechnical engineering IX, edited by A. S. Cardoso, J. I. Borges, P. A. Costa, A. T. Gomes, J. C. Marques, and C. S. Vieira, 69–77. London: Taylor & Francis.
Cuomo, S., M. Moscariello, D. Manzanal, M. Pastor, and V. Foresta. 2018b. “Modelling the mechanical behaviour of a natural unsaturated pyroclastic soil within generalized plasticity framework.” Comput. Geotech. 99 (Jul): 191–202. https://doi.org/10.1016/j.compgeo.2018.03.006.
Cuomo, S., N. Prime, A. Iannone, F. Dufour, L. Cascini, and F. Darve. 2013. “Large deformation FEMLIP drained analysis of a vertical cut.” Acta Geotech. 8 (2): 125–136.
Eckersley, J. D. 1985. “Flowslides in stockpiled coal.” Eng. Geol. 22 (1): 13–22. https://doi.org/10.1016/0013-7952(85)90034-1.
Eckersley, J. D. 1990. “Instrumented laboratory flowslides.” Géotechnique 40 (3): 489–502. https://doi.org/10.1680/geot.1990.40.3.489.
Fern, E. J., and K. Soga. 2016. “The role of constitutive models in MPM simulations of granular column collapses.” Acta Geotech. 11 (3): 659–678. https://doi.org/10.1007/s11440-016-0436-x.
Ghasemi, P., M. Martinelli, S. Cuomo, and M. Calvello. 2018. “MPM modelling of static liquefaction in reduced-scale slope.” In Vol. 2 of Numerical methods in geotechnical engineering IX, edited by A. S. Cardoso, J. I. Borges, P. A. Costa, A. T. Gomes, J. C. Marques, and C. S. Vieira, 1041–1046. London: Taylor & Francis.
Herle, I., and G. Gudehus. 1999. “Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies.” Mech. Cohesive-Frictional Mater. 4 (5): 461–486. https://doi.org/10.1002/(SICI)1099-1484(199909)4:5%3C461::AID-CFM71%3E3.0.CO;2-P.
Hosseinnezhad, V., M. Rafiee, M. Ahmadian, and M. T. Ameli. 2014. “Species-based quantum particle swarm optimization for economic load dispatch.” Int. J. Electr. Power Energy Syst. 63 (Dec): 311–322. https://doi.org/10.1016/j.ijepes.2014.05.066.
Janbu, N. 1955. “Application of composite slip surfaces for stability analysis.” In Vol. 3 of Proc., European Conf. on Stability of Earth Slopes, 43–49. Stockholm, Sweden: Statens Geoteckniska Institut.
Kishida, T., R. Boulanger, N. Abrahamson, T. Wehling, and M. Driller. 2009. “Regression models for dynamic properties of highly organic soils.” J. Geotech. Geoenviron. Eng. 135 (4): 533–543. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(533).
Knabe, T., M. Datcheva, T. Lahmer, F. Cotecchia, and T. Schanz. 2013. “Identification of constitutive parameters of soil using an optimization strategy and statistical analysis.” Comput. Geotech. 49 (Apr): 143–157. https://doi.org/10.1016/j.compgeo.2012.10.002.
Konstadinou, M., and V. N. Georgiannou. 2013. “Cyclic behaviour of loose anisotropically consolidated Ottawa sand under undrained torsional loading.” Géotechnique 63 (13): 1144–1158. https://doi.org/10.1680/geot.12.P.145.
Lade, P. 1992. “Static instability and liquefaction of loose fine sandy slopes.” J. Geotech. Eng. 118 (1): 51–71. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(51).
Lee, Y. S., C. Y. Cheuk, and M. D. Bolton. 2008. “Instability caused by a seepage impediment in layered fill slopes.” Can. Geotech. J. 45 (10): 1410–1425. https://doi.org/10.1139/T08-067.
Lourenço, S., K. Sassa, and H. Fukuoka. 2006. “Failure process and hydrologic response of a two layer physical model: Implications for rainfall-induced landslides.” Geomorphology 73 (1–2): 115–130. https://doi.org/10.1016/j.geomorph.2005.06.004.
Mašín, D. 2015. “Hypoplasticity for practical applications. Part 4: Determination of material parameters.” Ph.D. course. Accessed March 3, 2016. https://soilmodels.com/phd-course-hypoplasticity-for-practical-applications/.
Meier, J., W. Schaedler, L. Borgatti, A. Corsini, and T. Schanz. 2008. “Inverse parameter identification technique using PSO algorithm applied to geotechnical modeling.” J. Artif. Evol. Appl. 2008: 1–14. https://doi.org/10.1155/2008/574613.
Mesri, G., and M. Ajlouni. 2007. “Engineering properties of fibrous peats.” J. Geotech. Geoenviron. Eng. 133 (7): 850–866. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(850).
Morgenstern, N. R., and V. E. Price. 1965. “The analysis of the stability of general slip surfaces.” Géotechnique 15 (1): 79–93. https://doi.org/10.1680/geot.1965.15.1.79.
Ng, C. W. W. 2009. “What is static liquefaction failure of loose fill slopes?” In Vol. 1 of Proc., First Italian Workshop on Landslides, 43–51. Napoli, Italy: Doppiavoce.
Niemunis, A., and I. Herle. 1997. “Hypoplastic model for cohesionless soils with elastic strain range.” Mech. Cohesive-Frictional Mater. 2 (4): 279–299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4%3C279::AID-CFM29%3E3.0.CO;2-8.
Pastor, M., J. A. Fernandez-Merodo, E. Gonzalez, P. Mira, T. Li, and X. Liu. 2004. “Modelling of landslides: I. Failure mechanisms.” Degradations and instabilities in geomaterials, edited by F. Darve and I. Vardoulakis, 287–317. Vienna, Austria: Springer-Verlag.
Pastor, M., B. Haddad, G. Sorbino, S. Cuomo, and V. Drempetic. 2009. “A depth-integrated, coupled SPH model for flow-like landslides and related phenomena.” Int. J. Numer. Anal. Methods Geomech. 33 (2): 143–172. https://doi.org/10.1002/nag.705.
Phuong, N. T. V., A. F. Van Tol, A. S. K. Elkadi, and A. Rohe. 2016. “Numerical investigation of pile installation effects in sand using material point method.” Comput. Geotech. 73 (Mar): 58–71. https://doi.org/10.1016/j.compgeo.2015.11.012.
Prime, N., F. Dufour, and F. Darve. 2014. “Solid–fluid transition modelling in geomaterials and application to a mudflow interacting with an obstacle.” Int. J. Numer. Anal. Methods Geomech. 38 (13): 1341–1361. https://doi.org/10.1002/nag.2260.
Soga, K., E. Alonso, A. Yerro, K. Kumar, and S. Bandara. 2016. “Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method.” Géotechnique 66 (3): 248–273. https://doi.org/10.1680/jgeot.15.LM.005.
Stutz, H., D. Mašín, and F. Wuttke. 2016. “Enhancement of a hypoplastic model for granular soil–structure interface behaviour.” Acta Geotech. 11 (6): 1249–1261. https://doi.org/10.1007/s11440-016-0440-1.
Sulsky, D., Z. Chen, and H. L. Schreyer. 1994. “A particle method for history-dependent materials.” Comput. Methods Appl. Mech. Eng. 118 (1–2): 179–196. https://doi.org/10.1016/0045-7825(94)90112-0.
Take, W. A., M. D. Bolton, P. C. P. Wong, and F. J. Yeung. 2004. “Evaluation of landslide triggering mechanisms in model fill slopes.” Landslides 1 (3): 173–184. https://doi.org/10.1007/s10346-004-0025-1.
Verruijt, A. 2009. An introduction to soil dynamics. Vol. 24 of Theory and Applications of Transport in Porous Media, Dordrecht, Netherlands: Springer.
Von Wolffersdorff, P. A. 1996. “A hypoplastic relation for granular materials with a predefined limit state surface.” Mech. Cohesive-Frictional Mater. 1 (3): 251–271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3%3C251::AID-CFM13%3E3.0.CO;2-3.
Wang, B., P. J. Vardon, M. A. Hicks, and Z. Chen. 2016. “Development of an implicit material point method for geotechnical applications.” Comput. Geotech. 71 (Jan): 159–167. https://doi.org/10.1016/j.compgeo.2015.08.008.
Wegener, D., and I. Herle. 2012. “Zur Steifigkeit bei kleinen Dehnungen im Rahmen der Hypoplastizität.” Geotechnik 35 (4): 229–235. https://doi.org/10.1002/gete.201200006.
Wegener, D., and I. Herle. 2014. “Prediction of permanent soil deformations due to cyclic shearing with a hypoplastic constitutive model.” Geotechnik 37 (2): 113–122. https://doi.org/10.1002/gete.201300013.
Wichtmann, T., and T. Triantafyllidis. 2016. “An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: Part I: Tests with monotonic loading and stress cycles.” Acta Geotech. 11 (4): 739–761. https://doi.org/10.1007/s11440-015-0402-z.
Yamamuro, J., and P. Lade. 1998. “Steady-state concepts and static liquefaction of silty sands.” J. Geotech. Geoenviron. Eng. 124 (9): 868–877. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(868).
Yerro, A., N. M. Pinyol, and E. E. Alonso. 2016. “Internal progressive failure in deep-seated landslides.” Rock Mech. Rock Eng. 49 (6): 2317–2332. https://doi.org/10.1007/s00603-015-0888-6.
Yin, Z. Y., Y. F. Jin, S. L. Shen, and H. W. Huang. 2017. “An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model.” Acta Geotech. 12 (4): 849–867. https://doi.org/10.1007/s11440-016-0486-0.
Yuan, C., and B. Chareyre. 2017. “A pore-scale method for hydromechanical coupling in deformable granular media.” Comput. Methods Appl. Mech. Eng. 318 (May): 1066–1079. https://doi.org/10.1016/j.cma.2017.02.024.
Zhang, Y., D. Gallipoli, and C. Augarde. 2013. “Parameter identification for elasto-plastic modelling of unsaturated soils from pressuremeter tests by parallel modified particle swarm optimization.” Comput. Geotech. 48 (Mar): 293–303. https://doi.org/10.1016/j.compgeo.2012.08.004.
Zhao, H. B., and S. Yin. 2009. “Geomechanical parameters identification by particle swarm optimization and support vector machine.” Appl. Math. Modell. 33 (10): 3997–4012. https://doi.org/10.1016/j.apm.2009.01.011.
Zhao, X., D. Liang, and M. Martinelli. 2017. “Numerical simulations of dam-break floods with MPM.” Procedia Eng. 175: 133–140. https://doi.org/10.1016/j.proeng.2017.01.041.
Zienkiewicz, O. C., A. H. C. Chan, M. Pastor, B. A. Schrefler, and T. Shiomi. 1999. Computational Geomechanics with Special Reference to Earthquake Engineering. Chichester, UK: Wiley.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 19Issue 10October 2019

History

Received: Aug 25, 2018
Accepted: Apr 10, 2019
Published online: Jul 24, 2019
Published in print: Oct 1, 2019
Discussion open until: Dec 24, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Dept. of Civil Engineering, Univ. of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy. ORCID: https://orcid.org/0000-0001-8024-0319.
Pooyan Ghasemi [email protected]
Ph.D. Candidate, Dept. of Civil Engineering, Univ. of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy (corresponding author). Email: [email protected]
Mario Martinelli
Senior Researcher, Deltares, Boussinesqweg 1, Delft 2629 HV, Netherlands.
Associate Professor, Dept. of Civil Engineering, Univ. of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy. ORCID: https://orcid.org/0000-0002-3899-1722.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share