Technical Papers
Sep 11, 2019

Strength and Deformation Responses of Biocemented Sands Using a Temperature-Controlled Method

Publication: International Journal of Geomechanics
Volume 19, Issue 11

Abstract

The strength and deformation responses of sands improved by a temperature-controlled biotreatment method were investigated through a series of drained triaxial compression tests under various confining pressures. The proposed temperature-controlled biotreated method was capable of producing a nearly homogeneous calcite distribution along the specimen length. For a given confining pressure, the peak-state strength, maximum dilatancy, and secant modulus at 50% of the peak-state strength, which were determined by the bonding between sand grains, increased with increasing calcite content. The residual-state strength, which was dependent on the surface roughness of the sand grains, initially decreased as the calcite increased to 1.8% and then increased as the calcite content increased further. This finding was validated by scanning electron microscope (SEM) images, which showed that increasing the calcite content to 1.8% led to a decrease in the sand grain surface roughness and that further increasing the calcite content resulted in greater sand grain surface roughness.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the financial support received from the National Science Foundation of China (Grant No. 51678094, Grant No. 41831282, and Grant No. 51578096), and the China Postdoctoral Science Foundation (Grant No. 2017T100681).

References

Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Geotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
ASTM 2016a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. D4253-16. West Conshohocken, PA: ASTM.
ASTM 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. D4254-16. West Conshohocken, PA: ASTM.
Bachus, R. C. et al. 2019. “Characterization and engineering properties of dry and ponded class-F fly ash.” J. Geotech. Geoenviron. Eng. 145 (3): 04019003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001986.
Cambi, C., S. Carrisi, and P. Comodi. 2012. “Use of the methylene blue stain test to evaluate the efficiency of lime treatment on selected clayey soils.” J. Geotech. Geoenviron. Eng. 138 (9): 1147–1150. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000687.
Castellanza, R., R. Nova, and G. Orlandi. 2010. “Evaluation and remediation of an abandoned gypsum mine.” J. Geotech. Geoenviron. Eng. 136 (4): 629–639. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000249.
Chen, Q., and B. Indraratna. 2015. “Shear behaviour of sandy silt treated with lignosulfonate.” Can. Geotech. J. 52 (8): 1180–1185. https://doi.org/10.1139/cgj-2014-0249.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheng, L., and M. A. Shahin. 2017. “Stabilisation of oil-contaminated soils using microbially induced calcite crystals by bacterial flocs.” Geotech. Lett. 7 (2): 146–151. https://doi.org/10.1680/jgele.16.00178.
Chiu, C. F., and X. J. Fu. 2008. “Interpreting undrained instability of mixed soils by equivalent intergranular state parameter.” Geotechnique 58 (9): 751–755. https://doi.org/10.1680/geot.2008.58.9.751.
Chou, C.-W., E. A. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through Ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Chu, J., V. Ivanov, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of an aquaculture pond in sand.” Geotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
Chu, J., V. Stabnikov, and V. Ivanov. 2012. “Microbially induced calcium carbonate precipitation on surface or in the bulk of soil.” Geomicrobiol. J. 29 (6): 544–549. https://doi.org/10.1080/01490451.2011.592929.
Consoli, N. C., L. da Silva Lopes Jr., P. D. M. Prietto, L. Festugato, and R. C. Cruz. 2011. “Variables controlling stiffness and strength of lime-stabilized soils.” J. Geotech. Geoenviron. Eng. 137 (6): 628–632. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000470.
Consoli, N. C., L. Festugato, B. S. Consoli, and S. Lopes. 2015. “Assessing failure envelopes of soil-fly ash-lime blends.” J. Mater. Civ. Eng. 27 (5): 04014174. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001134.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
Desai, C. S. 2015. “Constitutive modeling of materials and contacts using the disturbed state concept: Part 2—Validations at specimen and boundary value problem levels.” Comput. Struct. 146: 234–251. https://doi.org/10.1016/j.compstruc.2014.07.026.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Feng, K., and B. M. Montoya. 2017. “Quantifying level of microbial-induced cementation for cyclically loaded sand.” J. Geotech. Geoenviron. Eng. 143 (6): 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
Ghosh, A., and C. Subbarao. 2007. “Strength characteristics of class F fly ash modified with lime and gypsum.” J. Geotech. Geoenviron. Eng. 133 (7): 757–766. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(757).
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Biotechnol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Geotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Kang, X., L. Ge, and W. C. Liao. 2016. “Cement hydration–based micromechanics modeling of the time-dependent small-strain stiffness of fly ash–stabilized soils.” Int. J. Geomech. 16 (3): 04015071. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000552.
Latifi, N., A. Eisazadeh, A. Marto, and C. L. Meehan. 2017. “Tropical residual soil stabilization: A powder form material for increasing soil strength.” Constr. Build. Mater. 147: 827–836. https://doi.org/10.1016/j.conbuildmat.2017.04.115.
Latifi, N., F. Vahedifard, S. Siddiqua, and S. Horpibulsuk. 2018. “Solidification–stabilization of heavy metal–contaminated clays using gypsum: Multiscale assessment.” Int. J. Geomech. 18 (11): 04015071. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001283.
Lee, M. L., W. S. Ng, and Y. Tanaka. 2013. “Stress-deformation and compressibility responses of bio-mediated residual soils.” Ecol. Eng. 60 (Nov): 142–149. https://doi.org/10.1016/j.ecoleng.2013.07.034.
Li, H. B., X. L. Zheng, Y. P. Sheng, and S. W. Ke. 2017. “Differential settlements of embankment treated by cement fly ash gravel pile and sheet pile in freeway extension constructions.” Int. J. Geomech. 17 (11): 04017092. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000995.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian. 2016. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Liu, J., B. Shi, H. Jiang, H. Huang, G. Wang, and T. Kamai. 2011. “Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer.” Eng. Geol. 117 (1–2): 114–120. https://doi.org/10.1016/j.enggeo.2010.10.011.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018. “Effect of particle size distribution on the bio-cementation of coarse aggregates.” Acta Geotech. 13 (4): 1019–1025. https://doi.org/10.1007/s11440-017-0604-7.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Mohammadinia, A., A. Arulrajah, J. Sanjayan, M. M. Disfani, M. W. Bo, and S. Darmawan. 2016. “Strength development and microfabric structure of construction and demolition aggregates stabilized with fly ash–based geopolymers.” J. Mater. Civ. Eng. 28 (11): 04016141. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001652.
Montoya, B. M., and J. T. DeJong. 2015. “Stress–strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Geotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Mortensen, B. M., M. J. Haber, J. T. DeJong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Nemati, M., and G. Voordouw. 2003. “Modification of porous media permeability, using calcium carbonate produced enzymatically in situ.” Enzyme Microb. Technol. 33 (5): 635–642. https://doi.org/10.1016/S0141-0229(03)00191-1.
Nguyen, L., and B. Fatahi. 2016. “Behaviour of clay treated with cement and fibre while capturing cementation degradation and fibre failure—C3F Model.” Int. J. Plast. 81 (Jun): 168–195. https://doi.org/10.1016/j.ijplas.2016.01.015.
O'Donnell, T. S., and E. Kavazanjian Jr. 2015. “Stiffness and dilatancy improvements in uncemented sands treated through MICP.” J. Geotech. Geoenviron. Eng. 141 (11): 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407.
Oliveira, P. J. V., L. D. Freitas, and J. P. S. F. Carmona. 2017. “Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement.” J. Mater. Civ. Eng. 29 (4): 04016263. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001804.
Papadopoulou, A. I., and T. M. Tika. 2016. “The effect of fines plasticity on monotonic undrained shear strength and liquefaction resistance of sands.” Soil Dyn. Earthquake Eng. 88 (Sep): 191–206. https://doi.org/10.1016/j.soildyn.2016.04.015.
Polito, C. P., and J. R. Martin II. 2001. “Effects of nonplastic fines on the liquefaction resistance of sands.” J. Geotech. Geoenviron. Eng. 127 (5): 408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408).
Rahimi, M., D. Chan, and A. Nouri. 2016. “Bounding surface constitutive model for cemented sand under monotonic loading.” Int. J. Geomech. 16 (2): 04015049. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000534.
Ranaivomanana, H., A. Razakamanantsoa, and O. Amiri. 2018. “Effects of cement treatment on microstructural, hydraulic, and mechanical properties of compacted soils: Characterization and modeling.” Int. J. Geomech. 18 (9): 04018106. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001248.
Rios, S., N. Cristelo, A. V. da Fonseca, and C. Ferreira. 2017. “Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains.” Int. J. Geomech. 17 (3): 04016087. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000783.
Saberi, M., C.-D. Annan, and J. Konrad. 2017. “Constitutive modeling of gravelly soil–structure interface considering particle breakage.” J. Eng. Mech. 143 (8): 04017044. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001246.
Selig, E., and R. Ladd. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Tagliaferri, F., J. Waller, E. Andò, S. A. Hall, G. Viggiani, P. Bésuelle, and J. T. DeJong. 2011. “Observing strain localisation processes in bio-cemented sand using x-ray imaging.” Granular Matter 13 (3): 247–250. https://doi.org/10.1007/s10035-011-0257-4.
Terzis, D., R. Bernier-Latmani, and L. Laloui. 2016. “Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions.” Geotech. Lett. 6 (1): 50–57. https://doi.org/10.1680/jgele.15.00134.
Toohey, N. M., M. A. Mooney, and R. G. Bearce. 2013. “Relationship between resilient modulus and unconfined compressive strength for lime-stabilized soils.” J. Geotech. Geoenviron. Eng. 139 (11): 1982–1985. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000925.
van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. C. M. van Loosdrecht. 2010a. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36 (2): 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010b. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Wei, Y., F. Wang, X. Gao, and Y. Zhong. 2017. “Microstructure and fatigue performance of polyurethane grout materials under compression.” J. Mater. Civ. Eng. 29 (9): 04017101. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001954.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Xiao, H., F. H. Lee, and Y. Liu. 2017a. “Bounding surface cam-clay model with cohesion for cement-admixed clay.” Int. J. Geomech. 17 (1): 04016026. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000671.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018a. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107 (Apr): 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019a. “Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Wengang Zhang. 2016. “Influence of particle breakage on critical state line of rockfill material.” Int. J. Geomech. 16 (1): 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
Xiao, Y., H. L. Liu, B. W. Nan, and J. S. McCartney. 2018b. “Gradation-dependent thermal conductivity of sands.” J. Geotech. Geoenviron. Eng. 144 (9): 06018010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001943.
Xiao, Y., L. Long, T. M. Matthew Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019b. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., A. W. Stuedlein, Q. Chen, H. Liu, and P. Liu. 2018c. “Stress–strain-strength response and ductility of gravels improved by polyurethane foam adhesive.” J. Geotech. Geoenviron. Eng. 144 (2): 04017108. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001812.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019c. “Effect of particle shape on the strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., Y. Sun, F. Yin, H. Liu, and J. Xiang. 2017b. “Constitutive modeling for transparent granular soils.” Int. J. Geomech. 17 (7): 04016150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857.
Yang, J., and X. D. Luo. 2015. “Exploring the relationship between critical state and particle shape for granular materials.” J. Mech. Phys. Solids 84 (Nov): 196–213. https://doi.org/10.1016/j.jmps.2015.08.001.
Yang, P., S. O'Donnell, N. Hamdan, E. Kavazanjian, and N. Neithalath. 2017. “3D DEM simulations of drained triaxial compression of sand strengthened using microbially induced carbonate precipitation.” Int. J. Geomech. 17 (6): 04016143. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000848.
Yang, S., S. Lacasse, and R. Sandven. 2006. “Determination of the transitional fines content of mixtures of sand and non-plastic fines.” Geotech. Test. J. 29 (2): 102–107.
Zamani, A., and B. M. Montoya. 2018. “Undrained monotonic shear response of MICP-treated silty sands.” J. Geotech. Geoenviron. Eng. 144 (6): 04016087. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001861.
Zhao, Q., L. Li, C. Li, M. Li, F. Amini, and H. Zhang. 2014. “Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease.” J. Mater. Civ. Eng. 26 (12): 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 19Issue 11November 2019

History

Received: Jan 8, 2019
Accepted: Apr 9, 2019
Published online: Sep 11, 2019
Published in print: Nov 1, 2019
Discussion open until: Feb 11, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China; Researcher, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China; Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
C. S. Desai, Dist.M.ASCE [email protected]
Regents' Professor Emeritus, Dept. of Civil Engineering and Engineering Mechanics, Univ. of Arizona, Tucson, AZ 85721. Email: [email protected]
Xiang Jiang [email protected]
Researcher, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Hanlong Liu [email protected]
Professor and Vice President, Chongqing Univ., Chongqing 400450, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share