Technical Papers
May 16, 2019

Critical State Study of Natural Silty Sand Instability under Undrained and Constant Shear Drained Path

Publication: International Journal of Geomechanics
Volume 19, Issue 8

Abstract

The prefailure instability of the granular soil slope due to lateral stress relief under the drained condition has been investigated experimentally under the constant shear drained (CSD) path in the literature. However, consensus on the drained instability and associated instability stress ratio, ηIS, has not yet been reached due to the differences in experimental setup and interpretation techniques. Earlier studies applied inconsistent real-time specimen-area correction and used three different interpretation techniques for ηIS: (1) rapid generation of axial strain, (2) change of volumetric dilation to contraction, and (3) a modified second-order work criterion. In this study, an advanced triaxial testing system was used for the CSD path to apply real-time area correction, and it was found that the aforementioned three techniques estimated slightly different ηIS. The rate of reduction of confining stress (Δσ3/dt) and initial state were found to have a significant effect on ηIS. The intriguing observation is that unlike undrained instability, drained instability can be recovered to a stable state by changing Δσ3/dt. The drained stress path used in this study can be applied in analyzing and designing tailing dams (e.g., Fundão tailing dam). Further, to compare these findings, a critical state line (CSL) and instability curve were developed through a series of undrained and drained triaxial tests. The results show that ηIS and the state parameter at the onset of drained instability exhibit a narrow trend, which also matches with the instability curve from undrained tests.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The first author acknowledges the financial support of the University Presidents Scholarship (UPS) from University of South Australia (UniSA) and the study leave from Dhaka University of Engineering and Technology (DUET), Bangladesh, for his doctoral study.

References

Anderson, S. A., and N. Sitar. 1994. “Procedures for the analysis of the mobilization of debris flows.” In Proc., 13th Int. Conf. on SMFE, 255–258. New Delhi, India: Oxford and IBH.
Anderson, S. A., and N. Sitar. 1995. “Analysis of rainfall-induced debris flows.” J. Geotech. Eng. 121 (7): 544–552. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:7(544).
ASTM International. 2005. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-05. West Conshohocken, PA: ASTM.
Baki, M. A. L., M. M. Rahman, S. R. Lo, and C. T. Gnanendran. 2012. “Linkage between static and cyclic liquefaction of loose sand with a range of fines contents.” Can. Geotech. J. 49 (8): 891–906. https://doi.org/10.1139/t2012-045.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Been, K., M. G. Jefferies, and J. Hachey. 1991. “The critical state of sands.” Géotechnique 41 (3): 365–381. https://doi.org/10.1680/geot.1991.41.3.365.
Bobei, D. C., S. R. Lo, D. Wanatowski, C. T. Gnanendran, and M. M. Rahman. 2009. “Modified state parameter for characterizing static liquefaction of sand with fines.” Can. Geotech. J. 46 (3): 281–295. https://doi.org/10.1139/T08-122.
Brand, E. W. 1981.“Some thoughts on rainfall induced slope failures.” In Proc., 10th Int. Conf. on Soil Mechanics and Foundation Engineering, 373–376. Rotterdam, Netherlands: A. A. Balkema.
Chu, J., W. K. Leong, W. L. Loke, and D. Wanatowski. 2012. “Instability of loose sand under drained conditions.” J. Geotech. Geoenviron. Eng. 138 (2): 207–216. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000574.
Chu, J., S. Leroueil, and W. K. Leong. 2003. “Unstable behaviour of sand and its implication for slope instability.” Can. Geotech. J. 40 (5): 873–885. https://doi.org/10.1139/t03-039.
Chu, J., S. R. Lo, and I. K. Lee. 1993. “Instability of granular soils under strain path testing.” J. Geotech. Eng. 119 (5): 874–892. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:5(874).
Chu, J., D. Wanatowski, W. K. Leong, W. L. Loke, and J. He. 2015. “Instability of dilative sand.” Geotech. Res. 2 (1): 35–48. https://doi.org/10.1680/gr.14.00015.
Colliat-Dangus, J. L., J. Desrues, and P. Foray. 1988. “Triaxial testing of granular soil under elevated cell pressure.” In Advanced triaxial testing of soil and rock, ASTM STP 977, edited by R. T. Donaghe, R. C. Chaney, and M. L. Silver, 290–310. West Conshohocken, PA: ASTM.
Daouadji, A., H. AlGali, F. Darve, and A. Zeghloul. 2010. “Instability in granular materials: experimental evidence of diffuse mode of failure for loose sands.” J. Eng. Mech. 136 (5): 575–588. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000101.
Darve, F., and F. Laouafa. 2000. “Instabilities in granular materials and application to landslides.” Mech. Cohes.-Frict. Mater. 5 (8): 627–652. https://doi.org/10.1002/1099-1484(200011)5:8%3C627::AID-CFM109%3E3.0.CO;2-F.
Dong, Q., C. Xu, Y. Cai, H. Juang, J. Wang, Z. Yang, and C. Gu. 2015. “Drained instability in loose granular material.” Int. J. Geomech. 16 (2): 04015043. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000524.
Drucker, D. C. 1957. “A definition of stable inelastic material.” J. Appl. Mech. 26 (1): 101–106.
Drucker, D. C., and D. Seereeram. 1987. “Remaining at yield during unloading and other unconventional elastic-plastic response.” J. Appl. Mech. 54 (1): 22–26. https://doi.org/10.1115/1.3172965.
Eckersley, J. D. 1990. “Instrumented laboratory flowslides.” Géotechnique 40 (3): 489–502. https://doi.org/10.1680/geot.1990.40.3.489.
Gajo, A., L. Piffer, and F. De Polo. 2000. “Analysis of certain factors affecting the unstable behaviour of saturated loose sand.” Mech. Cohes.-Frict. Mater. 5 (3): 215–237. https://doi.org/10.1002/(SICI)1099-1484(200004)5:3%3C215::AID-CFM92%3E3.0.CO;2-7.
Hill, R. 1958. “A general theory of uniqueness and stability in elastic-plastic solids.” J. Mech. Phys. Solids 6 (3): 236–249. https://doi.org/10.1016/0022-5096(58)90029-2.
Imam, S. M. R., N. R. Morgenstern, P. K. Robertson, and D. H. Chan. 2002. “Yielding and flow liquefaction of loose sand.” Soils Found. 42 (3): 19–31. https://doi.org/10.3208/sandf.42.3_19.
Imam, S. M. R., N. R. Morgenstern, P. K. Robertson, and D. H. Chan. 2005. “A critical-state constitutive model for liquefiable sand.” Can. Geotech. J. 42 (3): 830–855. https://doi.org/10.1139/t05-014.
Ishihara, K. 1993. “Liquefaction and flow failure during earthquakes.” Géotechnique 43 (3): 351–415. https://doi.org/10.1680/geot.1993.43.3.351.
Jefferies, M. G. 1993. “Nor-Sand: A simple critical state model for sand.” Géotechnique 43 (1): 91–103. https://doi.org/10.1680/geot.1993.43.1.91.
Kraft, L. M., Jr., T. M. Gavin, and J. C. Bruton. 1992. “Submarine flow slide in Puget Sound.” J. Geotech. Eng. 118 (10): 1577–1591. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:10(1577).
Lade, P. V., R. B. Nelson, and Y. M. Ito. 1987. “Nonassociated flow and stability of granular materials.” J. Eng. Mech. 113 (9): 1302–1318. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1302).
Lade, P. V., R. B. Nelson, and Y. M. Ito. 1988. “Instability of granular materials with nonassociated flow.” J. Eng. Mech. 114 (12): 2173–2191. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2173).
Lade, P. V., and D. Pradel. 1990. “Instability and plastic flow of soils. I: Experimental observations.” J. Eng. Mech. 116 (11): 2532–2550. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:11(2532).
Lade, P. V., and J. A. Yamamuro. 2011. “Evaluation of static liquefaction potential of silty sand slopes.” Can. Geotech. J. 48 (2): 247–264. https://doi.org/10.1139/T10-063.
Lashkari, A. 2016. “Prediction of flow liquefaction instability of clean and silty sands.” Acta Geotech. 11 (5): 987–1014. https://doi.org/10.1007/s11440-015-0413-9.
Leroueil, S. 2001. “Natural slopes and cuts: Movement and failure mechanisms.” Géotechnique 51 (3): 197–243. https://doi.org/10.1680/geot.2001.51.3.197.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Li, X. S., Y. F. Dafalias, and Z. L. Wang. 1999. “State-dependent dilatancy in critical-state constitutive modelling of sand.” Can. Geotech. J. 36 (4): 599–611. https://doi.org/10.1139/t99-029.
Lo, S. R., J. Chu, and I. K. Lee. 1989. “A technique for reducing membrane penetration and bedding errors.” Geotech. Test. J. 12 (4): 311–316. https://doi.org/10.1520/GTJ10991J.
Lo, S. R., M. M. Rahman, and D. Bobei. 2010. “Limited flow characteristics of sand with fines under cyclic loading.” Geomech. Geoeng. 5 (1): 15–25. https://doi.org/10.1080/17486020903452709.
Lourenço, S. D. N., G. H. Wang, and J. Chu. 2011. “Aspects of sand behaviour by modified constant shear drained tests.” Environ. Earth Sci. 62 (4): 865–870. https://doi.org/10.1007/s12665-010-0573-8.
Monkul, M. M., J. A. Yamamuro, and P. V. Lade. 2011. “Failure, instability, and the second work increment in loose silty sand.” Can. Geotech. J. 48 (6): 943–955. https://doi.org/10.1139/t11-013.
Morgenstern, N. R., S. G. Vick, C. B. Viotti, and B. D. Watts. 2016. Report on the Immediate Causes of the Failure of the Fundão Dam. New York: Cleary Gottlieb Steen & Hamilton.
Nguyen, H. B. K., M. M. Rahman, and A. B. Fourie. 2018. “Characteristic behaviour of drained and undrained triaxial tests: A DEM study.” J. Geotech. Geoenviron. Eng. 144 (9): 04018060. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001940.
Olson, S. M., T. D. Stark, W. H. Walton, and G. Castro. 2000. “1907 static liquefaction flow failure of the North Dike of Wachusett Dam.” J. Geotech. Geoenviron. Eng. 126 (12): 1184–1193. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:12(1184).
Omar, T., and A. Sadrekarimi. 2015. “Specimen size effects on behavior of loose sand in triaxial compression tests.” Can. Geotech. J. 52 (6): 732–746. https://doi.org/10.1139/cgj-2014-0234.
Pain, A. M., R. A. Shaw, and J. T. Valentine. 1999. Sand resources of the Mount Compass area: Reconnaissance drilling and testing. Rep. Book No. 99/00028. Adelaide, South Australia: Dept. of Primary Industries and Resources South Australia.
Rabbi, A. T. M. Z. 2015. “Behaviour of silty sand: Effect of consolidation, stress path and fines content.” Ph.D. thesis, Univ. of South Australia.
Rabbi, A. T. M. Z., M. M. Rahman, and D. A. Cameron. 2018. “Undrained behavior of silty sand and the role of isotropic and K0 consolidation.” J. Geotech. Geoenviron. Eng. 144 (4): 04018014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001859.
Rabbi, A. T. M. Z., M. M. Rahman, and D. A. Cameron. Forthcoming. “The relation between the state indices and the characteristic features of undrained behaviour of silty sand.” Soils Found. https://doi.org/10.1016/j.sandf.2019.01.005.
Rahman, M. M., and S. R. Lo. 2012. “Predicting the onset of static liquefaction of loose sand with fines.” J. Geotech. Geoenviron. Eng. 138 (8): 1037–1041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000661.
Rahman, M. M., and S. R. Lo. 2014. “Undrained behavior of sand-fines mixtures and their state parameter.” J. Geotech. Geoenviron. Eng. 140 (7): 04014036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001115.
Rahman, M. M., S. R. Lo, and Y. F. Dafalias. 2014. “Modelling the static liquefaction of sand with low-plasticity fines.” Géotechnique 64 (11): 881–894. https://doi.org/10.1680/geot.14.P.079.
Rahman, M. M., H. B. K. Nguyen, and A. T. M. Z. Rabbi. 2018. “The effect of consolidation on undrained behaviour of granular materials: Experiment and DEM simulation.” Electron. J. Geotech. Eng. 5 (4): 1–19. https://doi.org/10.1680/jgere.17.00019.
Rowe, P. W., and L. Barden. 1964. “Importance of free ends in triaxial testing.” J. Soil Mech. Found. Div. 90 (1): 1–28.
Sasitharan, S., P. K. Robertson, D. C. Sego, and N. R. Morgenstern. 1993. “Collapse behavior of sand.” Can. Geotech. J. 30 (4): 569–577. https://doi.org/10.1139/t93-049.
Skopek, P., N. R. Morgenstern, P. K. Robertson, and D. C. Sego. 1994. “Collapse of dry sand.” Can. Geotech. J. 31 (6): 1008–1014. https://doi.org/10.1139/t94-115.
Sladen, J. A., R. D. D'Hollander, and J. Krahn. 1985. “The liquefaction of sands, a collapse surface approach.” Can. Geotech. J. 22 (4): 564–578. https://doi.org/10.1139/t85-076.
Thevanayagam, S., T. Shenthan, S. Mohan, and J. Liang. 2002. “Undrained fragility of clean sands, silty sands, and sandy silts.” J. Geotech. Geoenviron. Eng. 128 (10): 849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
Wanatowski, D. 2005. “Strain softening and instability of sand under plane-strain conditions.” Ph.D. thesis, School of Civil and Environmental Engineering, Nanyang Technological Univ.
Wanatowski, D., and J. Chu. 2009. “Instability behaviour of Changi sand in plane-strain tests.” In Proc., 17th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 89–92. Amsterdam, Netherlands: IOS.
Wanatowski, D., and J. Chu. 2012. “Factors affecting pre-failure instability of sand under plane-strain conditions.” Géotechnique 62 (2): 121–135. https://doi.org/10.1680/geot.9.P.111.
Wanatowski, D., J. Chu, and W. L. Loke. 2010. “Drained instability of sand in plane strain.” Can. Geotech. J. 47 (4): 400–412. https://doi.org/10.1139/T09-111.
Wang, Z. L., Y. F. Dafalias, X. S. Li, and F. I. Makdisi. 2002. “State pressure index for modeling sand behavior.” J. Geotech. Geoenviron. Eng. 128 (6): 511–519. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511).
Wong, R. C. K. 1999. “Mobilized strength components of Athabasca oil sand in triaxial compression.” Can. Geotech. J. 36 (4): 718–735. https://doi.org/10.1139/t99-040.
Yamamuro, J. A., and P. V. Lade. 1998. “Steady-state concepts and static liquefaction of silty sands.” J. Geotech. Geoenviron. Eng. 124 (9): 868–877. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(868).
Yang, J. 2002. “Non-uniqueness of flow liquefaction line for loose sand.” Géotechnique 52 (10): 757–760. https://doi.org/10.1680/geot.2002.52.10.757.
Yang, S. L., R. Sandven, and L. Grande. 2006. “Steady-state lines of sand-silt mixtures.” Can. Geotech. J. 43 (11): 1213–1219. https://doi.org/10.1139/t06-069.
Zhang, J., S.-C. R. Lo, M. M. Rahman, and J. Yan. 2017. “Characterizing monotonic behavior of pond ash within critical state approach.” J. Geotech. Geoenviron. Eng. 144 (1): 04017100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001798.
Zhu, J. H., and S. A. Anderson. 1998. “Determination of shear strength of Hawaiian residual soil subjected to rainfall-induced landslides.” Géotechnique 48 (1): 73–82. https://doi.org/10.1680/geot.1998.48.1.73.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 19Issue 8August 2019

History

Received: Mar 17, 2018
Accepted: Jan 30, 2019
Published online: May 16, 2019
Published in print: Aug 1, 2019
Discussion open until: Oct 16, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Abu Taher Md Zillur Rabbi, Ph.D., M.ASCE https://orcid.org/0000-0002-7065-5606 [email protected]
Geotechnical Engineer, CMW Geosciences, 1 Tonsley Boulevard, Tonsley SA 5042, Australia; Research Associate, School of Natural and Built Environments, Univ. of South Australia, Mawson Lakes SA 5095, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-7065-5606. Email: [email protected]
Md Mizanur Rahman, Ph.D., M.ASCE [email protected]
Research Strand Leader, Water and Natural Resources, Natural and Built Environments Research Centre (NBERC), Univ. of South Australia, Mawson Lakes SA 5095, Australia; Associate Professor of Civil Engineering, School of Natural and Built Environments, Univ. of South Australia, Mawson Lakes SA 5095, Australia. Email: [email protected]
Donald Cameron, Ph.D. [email protected]
Adjunct Senior Research Fellow, School of Natural and Built Environments, Univ. of South Australia, Mawson Lakes SA 5095, Australia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share