Technical Papers
Nov 1, 2018

Evaluating Damage and Microcracking Behavior of Granite Using NMR Testing under Different Levels of Unconfined Compression

Publication: International Journal of Geomechanics
Volume 19, Issue 1

Abstract

This work discusses the results from tests performed to investigate the damage and microcracking behaviors of granites. The samples, previously loaded to varying predefined stress levels and then unloaded to zero, were tested using a nuclear magnetic resonance (NMR) technique. The variations in the micro-NMR parameters, including the NMR-derived porosity, transverse relaxation time (T2) spectra distribution, and T2 area of the samples, were quantitively analyzed prior to and after the uniaxial loading/unloading tests. The results show that the induced damage in the samples increases with the loading ratio, and the rate of increase is significantly accelerated when the loading ratio is greater than 0.7. An NMR-based damage parameter was introduced to evaluate the degradation process under unconfined compression. Three stages of microcracking evolution were distinguished under the unconfined loading condition according to the variations in the proportion of the micropores and macropores. The NMR technique offers an alternative method to characterize the mesodamage and microcracking of rock under compression and has the advantages of being accurate and nondestructive.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The NMR tests were carried out at Central South University with the help of Dr. X. Xie. This work was financially supported by the National Natural Science Foundation of China (41772309 and 41502283) and the China Postdoctoral Science Foundation (2017M622524).

References

Alam, M. M., M. L. Hjuler, H. F. Christensen, and I. L. Fabricius. 2014. “Petrophysical and rock-mechanics effects of CO2 injection for enhanced oil recovery: Experimental study on chalk from South Arne field, North Sea.” J. Petrol. Sci. Eng. 122: 468–487. https://doi.org/10.1016/j.petrol.2014.08.008.
Anovitz, L. M., and D. R. Cole. 2015. “Characterization and analysis of porosity and pore structures.” Rev. Mineral. Geochem. 80 (1): 61–164. https://doi.org/10.2138/rmg.2015.80.04.
Archer, J. W., M. R. Dobbs, A. Aydin, H. J. Reeves, and R. J. Prance. 2016. “Measurement and correlation of acoustic emissions and pressure stimulated voltages in rock using an electric potential sensor.” Int. J. Rock Mech. Min. Sci. 89: 26–33. https://doi.org/10.1016/j.ijrmms.2016.08.002.
ASTM. 2014. Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. D7012-14e1. West Conshohocken, PA: ASTM.
Bieniawski, Z. T. 1967. “Mechanism of brittle fracture of rock. Parts 1-3.” Int. J. Rock Mech. Min. Sci. 4 (4): 395–430. https://doi.org/10.1016/0148-9062(67)90030-7.
Bieniawski, Z. T., and M. J. Bernede. 1979a. “Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining determination of the uniaxial compressive strength of rock materials.” Int. J. Rock Mech. Min. Sci. Geom. Abstr. 16 (2): 137–138. https://doi.org/10.1016/0148-9062(79)91450-5.
Bieniawski, Z. T., and M. J. Bernede. 1979b. “Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determination deformability of rock materials in uniaxial compression.” Int. J. Rock Mech. Min. Sci. Geom. Abstr. 16 (2): 138–140. https://doi.org/10.1016/0148-9062(79)91451-7.
Brace, W. F., B. W. Paulding Jr., and C. H. Scholz. 1966. “Dilatancy in the fracture of crystalline rocks.” J. Geophys. Res. 71 (16): 3939–3953. https://doi.org/10.1029/JZ071i016p03939.
Browning, J., P. G. Meredith, C. E. Stuart, D. Healy, S. Harland, and T. M. Mitchell. 2017. “Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading.” J. Geophys. Res. Solid Earth 122 (6): 4395–4412. https://doi.org/10.1002/2016JB013646.
Cai, M., P. K. Kaiser, Y. Tasaka, T. Maejima, H. Morioka, and M. Minami. 2004. “Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations.” Int. J. Rock Mech. Min. Sci. 41 (5): 833–847. https://doi.org/10.1016/j.ijrmms.2004.02.001.
Casieri, C., F. De Luca, and P. Fantazzini. 2005. “Pore-size evaluation by single-sided nuclear magnetic resonance measurements: Compensation of water self-diffusion effect on transverse relaxation.” J. Appl. Phys. 97 (4): 043901. https://doi.org/10.1063/1.1833572.
Dillinger, A., and L. Esteban. 2014. “Experimental evaluation of reservoir quality in Mesozoic formations of the Perth Basin (Western Australia) by using a laboratory low field nuclear magnetic resonance.” Mar. Pet. Geol. 57: 455–469. https://doi.org/10.1016/j.marpetgeo.2014.06.010.
Dunn, K.-J., D. J. Bergman, and G. A. LaTorraca. 2002. Nuclear magnetic resonance: Petrophysical and logging applications. Oxford, UK: Elsevier Science.
Fan, L. F., F. Ren, and G. W. Ma. 2012. “Experimental study on viscoelastic behavior of sedimentary rock under dynamic loading.” Rock Mech. Rock Eng. 45 (3): 433–438. https://doi.org/10.1007/s00603-011-0197-7.
Fang, W., H. Jiang, J. Li, W. Li, J. Li, L. Zhao, and X. Feng. 2016. “A new experimental methodology to investigate formation damage in clay-bearing reservoirs.” J. Pet. Sci. Eng. 143: 226–234. https://doi.org/10.1016/j.petrol.2016.02.023.
Feng, X.-Q., Q. Qin, and S-W. Yu. 2004a. “Quasi-micromechanical damage model for brittle solids with interacting microcracks.” Mech. Mater. 36 (3): 261–273. https://doi.org/10.1016/S0167-6636(03)00021-8.
Feng, X.-Q., and S.-W. Yu. 1993. “A new damage model for microcrack-weakened brittle solids.” Acta Mech. Sin. 9 (3): 251–260. https://doi.org/10.1007/bf02486802.
Feng, X.-Q., and S.-W. Yu. 2010. “Damage micromechanics for constitutive relations and failure of microcracked quasi-brittle materials.” Int. J. Damage Mech. 19 (8): 911–948. https://doi.org/10.1177/1056789509359662.
Feng, X.-T., S. Chen, and H. Zhou. 2004b. “Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion.” Int. J. Rock Mech. Min. Sci. 41 (2): 181–192. https://doi.org/10.1016/S1365-1609(03)00059-5.
Frosch, G. P., J. E. Tillich, R. Haselmeier, M. Holz, and E. Althaus. 2000. “Probing the pore space of geothermal reservoir sandstones by Nuclear Magnetic Resonance.” Geothermics 29 (6): 671–687. https://doi.org/10.1016/S0375-6505(00)00031-6.
Fu, H., X. Wang, L. Zhang, R. Gao, Z. Li, T. Xu, X. Zhu, W. Xu, and Q. Li. 2015. “Investigation of the factors that control the development of pore structure in lacustrine shale: A case study of Block X in the Ordos Basin, China.” J. Nat. Gas Sci. Eng. 26: 1422–1432. https://doi.org/10.1016/j.jngse.2015.07.025.
Gao, F., and H. Kang. 2017. “Grain-Based Discrete-Element Modeling Study on the Effects of Cementation on the Mechanical Behavior of Low-Porosity Brittle Rocks.” Int. J. Geomech. 17 (9): 04017061. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000957.
Ge, X., J. Ren, Y. Pu, W. Ma, and Y. Zhu. 2001. “Real-in time CT test of the rock meso-damage propagation law.” Sci. China Ser. E: Technol. Sci. 44 (3): 328–336. https://doi.org/10.1007/BF02916710.
Ghobadi, M. H., and R. Babazadeh. 2015. “Experimental studies on the effects of cyclic freezing-thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones.” Rock Mech. Rock Eng. 48 (3): 1001–1016. https://doi.org/10.1007/s00603-014-0609-6.
Graham, C. C., S. Stanchits, I. G. Main, and G. Dresen. 2010. “Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data.” Int. J. Rock Mech. Min. Sci. 47 (1): 161–169. https://doi.org/10.1016/j.ijrmms.2009.05.002.
Han, T., J. Shi, and X. Cao. 2016. “Fracturing and damage to sandstone under coupling effects of chemical corrosion and freeze-thaw cycles.” Rock Mech. Rock Eng. 49 (11): 4245–4255. https://doi.org/10.1007/s00603-016-1028-7.
Heap, M. J., and D. R. Faulkner. 2008. “Quantifying the evolution of static elastic properties as crystalline rock approaches failure.” Int. J. Rock Mech. Min. Sci. 45 (4): 564–573. https://doi.org/10.1016/j.ijrmms.2007.07.018.
Kleinberg, R. L., and M. Horsfield. 1990. “Transverse relaxation processes in porous sedimentary rock.” J. Magn. Reson. 88 (1): 9–19. https://doi.org/10.1016/0022-2364(90)90104-H.
Kleinberg, R. L., W. E. Kenyon, and P. P. Mitra. 1994. “Mechanism of NMR relaxation of fluids in rock.” J. Magn. Reson., Ser. A 108 (2): 206–214. https://doi.org/10.1006/jmra.1994.1112.
Kling, T., D. Huo, J.-O. Schwarz, F. Enzmann, S. Benson, and P. Blum. 2016. “Simulating stress-dependent fluid flow in a fractured core sample using real-time X-ray CT data.” Solid Earth 7 (4): 1109–1124. https://doi.org/10.5194/se-7-1109-2016.
Lassila, I., R. Karlqvist, T. Elbra, F. K. Gates, L. J. Pesonen, and E. Haeggstrom. 2010. “Ultrasonic velocity of the upper gneiss series rocks from the Outokumpu deep drill hole, Fennoscandian shield — Comparing uniaxial to triaxial loading.” J. Appl. Geophys. 72 (3): 178–183. https://doi.org/10.1016/j.jappgeo.2010.09.001.
Lee, S.-E., M.-I. Kim, J.-H. Park, C.-K. Park, M. Kang, and G.-C. Jeong. 2006. “Damage process of intact granite under uniaxial compression: Microscopic observations and contact stress analysis of grains.” Geosci. J. 10 (4): 457–463. https://doi.org/10.1007/BF02910439.
Legchenko, A., J.-M. Baltassat, A. Beauce, and J. Bernard. 2002. “Nuclear magnetic resonance as a geophysical tool for hydrogeologists.” J. Appl. Geophys. 50 (1-2): 21–46. https://doi.org/10.1016/S0926-9851(02)00128-3.
Leong, E.-C., S.-H. Yeo, and H. Rahardjo. 2004. “Measurement of wave velocities and attenuation using an ultrasonic test system.” Can Geotech J. 41 (5): 844–860. https://doi.org/10.1139/t04-041.
Li, X. B., D. Y. Li, L. Guo, and Z. Y. Ye. 2007. “Study on mechanical response of highly-stressed pillars in deep mining under dynamic disturbance.” Chin. J. Rock Mech. Eng. 26 (5): 922–929.
Lim, Y. Y., K. Z. Kwong, W. Y. H. Liew, and C. K. Soh. 2016. “Non-destructive concrete strength evaluation using smart piezoelectric transducer-a comparative study.” Smart Mater. Struct. 25 (8): 085021. https://doi.org/10.1088/0964-1726/25/8/085021.
Liu, B. X., Z. L. Shu, M. M. Liu, J. J. Han, and K. Zhang. 2012. “Real-time CT experimental research on microscopic damage evolution of coal rock under compression.” Disaster Adv. 5: 164–172.
Liu, D., H. Ge, J. Liu, Y. Shen, Y. Wang, Q. Liu, C. Jin, and Y. Zhang. 2016. “Experimental investigation on aqueous phase migration in unconventional gas reservoir rock samples by nuclear magnetic resonance.” J. Nat. Gas Sci. Eng. 36 (Part A): 837–851. https://doi.org/10.1016/j.jngse.2016.11.005.
Liu, J.-P., Y.-H. Li, S.-D. Xu, S. Xu, and C.-Y. Jin. 2015a. “Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission.” Theor. Appl. Fract. Mech. 75: 151–159. https://doi.org/10.1016/j.tafmec.2014.12.006.
Liu, J.-P., Y.-H. Li, S.-D. Xu, S. Xu, C.-Y. Jin, and Z.-S. Liu. 2015b. “Moment tensor analysis of acoustic emission for cracking mechanisms in rock with a pre-cut circular hole under uniaxial compression.” Eng. Fract. Mech. 135 206–218. https://doi.org/10.1016/j.engfracmech.2015.01.006.
Liu, Q., J. Xu, X. Liu, J. Jiang, and B. Liu. 2015c. “The role of flaws on crack growth in rock-like material assessed by AE technique.” Int. J. Fract. 193 (2): 99–115. https://doi.org/10.1007/s10704-015-0021-6.
Lockner, D. A., J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin. 1992. “Chapter 1 Observations of quasistatic fault growth from acoustic emissions.” Int.Geophys. 51: 3–31. https://doi.org/10.1016/S0074-6142(08)62813-2.
Manthei, G., J. Eisenblatter, and T. Dahm. 2001. “Moment tensor evaluation of acoustic emission sources in salt rock.” Constr. Build. Mater. 15 (5-6): 297–309. https://doi.org/10.1016/S0950-0618(00)00078-7.
Martin, C. D. 1997. “Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength.” Can. Geotech. J. 34 (5): 698–725. https://doi.org/10.1139/t97-030.
Martin, C. D., and N. A. Chandler. 1994. “The progressive fracture of Lac Du Bonnet granite.” Int. J. Rock Mech. Min. Sci. Geom. Abstr. 31 (6): 643–659. https://doi.org/10.1016/0148-9062(94)90005-1.
Martinez-Martinez, J., D. Benavente, M. Gomez-Heras, L. Marco-Castano, and M. A. Garcia-del-Cura. 2013. “Non-linear decay of building stones during freeze-thaw weathering processes.” Constr. Build. Mater. 38: 443–454. https://doi.org/10.1016/j.conbuildmat.2012.07.059.
Nakashima, Y., Y. Mitsuhata, J. Nishiwaki, Y. Kawabe, S. Utsuzawa, and M. Jinguuji. 2011. “Non-destructive analysis of oil-contaminated soil core samples by X-ray computed tomography and low-field nuclear magnetic resonance relaxometry: A case study.” Water Air Soil Pollut. 214 (1-4): 681–698. https://doi.org/10.1007/s11270-010-0473-2.
Ni, J., Y.-L. Chen, P. Wang, S.-R. Wang, B. Peng, and R. Azzam. 2017. “Effect of chemical erosion and freeze-thaw cycling on the physical and mechanical characteristics of granites.” Bull. Eng. Geol. Environ. 76 (1): 169–179. https://doi.org/10.1007/s10064-016-0891-5.
Oda, H., O. Nishizawa, K. Kusunose, and T. Hirata. 1990. “Frequency-dependence of velocity and attenuation of elastic waves in granite under uniaxial compression.” Pure Appl. Geophys. 133 (1): 73–85. https://doi.org/10.1007/BF00876703.
Ohtsu, M. 1991. “Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test.” J. Geophys. Res. Solid Earth 96 (B4): 6211–6221. https://doi.org/10.1029/90JB02689.
Olatinsu, O. B., D. O. Olorode, B. Clennell, L. Esteban, and M. Josh. 2017. “Lithotype characterizations by nuclear magnetic resonance (NMR): A case study on limestone and associated rocks from the eastern Dahomey Basin, Nigeria.” J. Afr. Earth. Sci. 129: 701–712. https://doi.org/10.1016/j.jafrearsci.2017.02.005.
Peng, J., L. N. Y. Wong, and C. Teh. 2017. “Effects of grain size-to-particle size ratio on micro-cracking behavior using a bonded-particle grain-based model.” Int. J. Rock Mech. Min. Sci. 100: 207–217. https://doi.org/10.1016/j.ijrmms.2017.10.004.
Qin, L., C. Zhai, S. Liu, J. Xu, G. Yu, and Y. Sun. 2017. “Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw—A nuclear magnetic resonance investigation.” Fuel 194: 102–114. https://doi.org/10.1016/j.fuel.2017.01.005.
Sayers, C. M., and M. Kachanov. 1995. “Microcrack-induced elastic wave anisotropy of brittle rocks.” J. Geophys. Res. Solid Earth 100 (B3): 4149–4156. https://doi.org/10.1029/94JB03134.
Sun, W., K. Hou, Z. Yang, and Y. Wen. 2017. “X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression.” Constr. Build. Mater. 138: 69–78. https://doi.org/10.1016/j.conbuildmat.2017.01.088.
Taheri, A., N. Yfantidis, C. L. Olivares, B. J. Connelly, and T. J. Bastian. 2016. “Experimental study on degradation of mechanical properties of sandstone under different cyclic loadings.” Geotech. Test. J. 39 (4): 673–687. https://doi.org/10.1520/GTJ20150231.
Tang, Z., C. Zhai, Q. Zou, and L. Qin. 2016. “Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance.” Fuel 186: 571–578, https://doi.org/10.1016/j.fuel.2016.08.103.
Wang, S., W. Xu, W. Wang, and C. Jia. 2018. “Experimental and numerical investigations on the mechanical behavior of fine-grained sandstone.” Int. J. Geomech. 18 (2): 04017150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001062.
Wang, Y., and C. H. Li. 2017. “Investigation of the P- and S-wave velocity anisotropy of a Longmaxi formation shale by real-time ultrasonic and mechanical experiments under uniaxial deformation.” J. Pet. Sci. Eng. 158: 253–267. https://doi.org/10.1016/j.petrol.2017.08.054.
Watson, A. T., and C. T. Philip. Chang. 1997. “Characterizing porous media with NMR methods.” Prog. Nucl. Magn. Reson. Spectrosc. 31 (4): 343–386. https://doi.org/10.1016/S0079-6565(97)00053-8.
Weng, L., Z. Wu, and X. Li. 2018. “Mesodamage characteristics of rock with a pre-cut opening under combined static–dynamic loads: A nuclear magnetic resonance (NMR) investigation.” Rock Mech. Rock Eng. 51 (8): 2339–2354. https://doi.org/10.1007/s00603-018-1483-4.
Westphal, H., I. Surholt, C. Kiesl, H. F. Thern, and T. Kruspe. 2005. “NMR measurements in carbonate rocks: Problems and an approach to a solution.” Pure Appl. Geophys. 162 (3): 549–570. https://doi.org/10.1007/s00024-004-2621-3.
Wulff, A.-M., T. Hashida, K. Watanabe, and H. Takahashi. 1999. “Attenuation behaviour of tuffaceous sandstone and granite during microfracturing.” Geophys. J. Int. 139 (2): 395–409. https://doi.org/10.1046/j.1365-246x.1999.00943.x.
Yang, S.-Q., H.-M. Ni, and S. Wen. 2014. “Spatial acoustic emission evolution of red sandstone during multi-stage triaxial deformation.” J. Cent. South Univ. 21 (8): 3316–3326. https://doi.org/10.1007/s11771-014-2305-9.
Yang, X., L. Weng, and Z. Hu. 2018. “Damage evolution of rocks under triaxial compressions: An NMR investigation.” KSCE J. Civ. Eng. 22 (8): 2856–2863. https://doi.org/10.1007/s12205-017-0766-8.
Yao, Y., D. Liu, Y. Che, D. Tang, S. Tang, and W. Huang. 2010. “Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR).” Fuel 89 (7): 1371–1380. https://doi.org/10.1016/j.fuel.2009.11.005.
Zhao, X. G., M. Cai, J. Wang, and L. K. Ma. 2013. “Damage stress and acoustic emission characteristics of the Beishan granite.” Int. J. Rock Mech. Min. Sci. 64: 258–269. https://doi.org/10.1016/j.ijrmms.2013.09.003.
Zhao, Y., L. Zhang, W. Wang, C. Pu, W. Wan, and J. Tang. 2016. “Cracking and stress-strain behavior of rock-like material containing two flaws under uniaxial compression.” Rock Mech. Rock Eng. 49 (7): 2665–2687. https://doi.org/10.1007/s00603-016-0932-1.
Zhou, X. P., Y. X. Zhang, and Q. L. Ha. 2008. “Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading.” Theor. Appl. Fract. Mech. 50 (1): 49–56. https://doi.org/10.1016/j.tafmec.2008.04.005.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 19Issue 1January 2019

History

Received: Feb 12, 2018
Accepted: Jul 16, 2018
Published online: Nov 1, 2018
Published in print: Jan 1, 2019
Discussion open until: Apr 1, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Research Fellow, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected].
Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China (corresponding author). Email: [email protected].
Quansheng Liu [email protected]
Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected].

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share