Technical Papers
Feb 26, 2016

Combined Finite–Discrete Numerical Modeling of Runout of the Torgiovannetto di Assisi Rockslide in Central Italy

Publication: International Journal of Geomechanics
Volume 16, Issue 6

Abstract

The combined finite–discrete-element method (FDEM) is an advanced and relatively new numerical modeling technique that combines the features of the FEM with those of the discrete-element method. It simulates the transition of brittle geomaterials from continua to discontinua through fracture growth, coalescence, and propagation. With FDEM, it is possible to simulate landslides from triggering to runout and carry out landslide scenario analyses, the results of which can be successively adopted for cost-effective early warning systems. The purpose of this paper is to describe the results of the FDEM simulations of the triggering mechanism and the evolution scenarios of the Torgiovannetto di Assisi rockslide (central Italy), a depleted limestone quarry face where a rock wedge with an approximate volume of 182,000 m3 lies in limit equilibrium conditions, posing relevant issues in terms of civil protection. The results obtained demonstrate that the FDEM is able to realistically simulate the different phases of such a complex slope’s failure as well as to estimate both its runout distances and velocity, key features for landslide risk assessment, and management.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The work described in this paper was funded by the Italian Ministry of Instruction, University and Research (MIUR) in the framework of the National Research Project PRIN 2009 titled “Integration of monitoring and numerical modelling techniques for early warning of large rockslides.” The project was carried out by the Department of Earth Sciences of the Università degli Studi di Firenze (national coordinator and responsible for the research unit: Prof. Nicola Casagli), the Department of Electrical and Information Engineering “Guglielmo Marconi” of the Università degli Studi di Bologna (responsible for the research unit: Prof. Andrea Giorgetti), and the Department of Structural, Building and Geotechnical Engineering of Politecnico di Torino (responsible for the research unit: Dr. Marco Barla).

References

Alehossein, H., and Hood, M. (1996). “State-of-the-art review of rock models for disc roller cutters.” Proc., 2nd North American Rock Mechanics Symp., M. Aubertin, F. Hassani, and H. Mitri, eds., Vol. 1–Rock Mechanics Tools and Techniques, Balkema, Rotterdam, the Netherlands, 693–700.
An, B., and Tannant, D. D. (2007). “Discrete element method contact model for dynamic simulation of inelastic rock impact.” Comput. Geosci., 33(4), 513–521.
Antolini, F. (2014). “The use of radar interferometry and finite-discrete modelling for the analysis of rock landslides.” Ph.D. thesis, Politecnico di Torino, Torino, Italy.
Atzeni, C., Barla, M., Pieraccini, M., and Antolini, F. (2015). “Early warning monitoring of natural and engineered slopes with ground-based synthetic aperture radar.” Rock Mech. Rock Eng., 48(1), 235–246.
Balducci, M., et al. (2011). “Design and built of a ground reinforced embankment for the protection of a provincial road (Assisi, Italy) against rockslide.” Proc., XXIV Convegno Nazionale di Geotecnica--Innovazione Tecnologica nell'Ingegneria Geotecnica, Vol. 1, Associazione Geotecnica Italiana, Rome.
Barenblatt, I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech., 7, 55–129.
Barla, G., Antolini, F., Barla, M., and Perino, A. (2013). “Key aspects in 2D and 3D modeling for stability assessment of a high rock slope.” Workshops “Failure Prediction” 2013, Austrian Society for Geomechanics, Salzburg, Austria.
Barla, M., and Antolini, F. (2012). “Integrazione tra monitoraggio e modellazione delle grandi frane in roccia nell’ottica dell’allertamento rapido.” Nuovi metodi di indagine e modellazione degli ammassi rocciosi, G. Barla,M. Barla,A. Ferrero, and T. Rotonda, eds., MIR 2010, Pàtron, Bologna, Italy, 211–229 (in Italian).
Barla, M., and Antolini, F. (2015). “An integrated methodology for landslides’ early warning systems.” Landslides,.
Barla, M., Piovano, G., and Grasselli, G. (2011). “Rock slide simulation with the combined finite discrete element method.” Int. J. Geomech., 711–721.
Brocca, L., Ponziani, F., Moramarco T., Melone F., Berni, N., and Wagner, W. (2012). “Improving landslide forecasting using ASCAT-derived soil moisture data: A case study of the Torgiovannetto landslide in central Italy.” Remote Sens., 4(12), 1232–1244.
Buratti, C., Giorgetti, A., and Verdone, R. (2005). “Cross layer design of an energy efficient cluster formation algorithm with carrier sensing multiple access for wireless sensor networks.” EURASIP J. Wireless Commun. Networking, 5(5), 672–685.
Canuti, P., Casagli, N., and Gigli, G. (2006). “Il modello geologico nelle interazioni fra movimenti di massa, infrastrutture e centri abitati.” Instabilità di versante, interazioni con le infrastrutture i centri abitati e l'ambiente, G. Barla, M. Barla, eds., MIR 2006, Pàtron, Bologna, Italy, 41–61 (in Italian).
Cundall, P. A., and Strack, O. D. L., (1979) “A discrete numerical model for granular assemblies.” Géotechnique, 29(1), 47 –65.
Dowding, C. H., Belytschko, T. B., and Yen, H. J. (1983). “A coupled finite element–rigid block method for transient analysis of rock caverns.” Int. J. Numer. Anal. Methods Geomech., 7(1), 117–127.
Dugdale, D. S. (1960). “Yielding of steel sheets containing slits.” J. Mech. Phys. Solids, 8(2), 100–104.
Evans, R., and Marathe, M. (1968). “Microcracking and stress-strain curves for concrete in tension.” Mater. Struct., 1(1), 61–64.
FRANC2D/L [Computer software]. Erin Iesulauro, Cornell Univ., Ithaca, NY.
Gigli, G., Casagli, N., Lombardi, L., and Nocentini, M. (2007). “Magnitude estimation and runout analyses of a rockslide in the Torgiovannetto quarry (PG).” European Geosciences Union General Assembly 2007, Copernicus Publications, Gottingen, Germany, Geophysical Reasearch Abstract 9, 08399.
Giorgetti, A., Lucchi, M., Chiani, M., and Win, M. Z. (2011). “Throughput per pass for data aggregation from a wireless sensor network via a UAV.” IEEE Trans. Aerosp. Electron. Syst., 47(4), 2610–2626.
Graziani, A., Marsella, M., Rotonda, T., Tommasi, P., and Soccodato, C. (2009). “Study of a rock slide in a limestone formation with clay interbeds.” Proc., Int. Conf. on Rock Joints and Jointed Rock Masses, Univ. of Arizona, Tucson, AZ.
Graziani, A., Rotonda, T., and Tommasi, P. (2010). “Fenomeni di scivolamento planare in ammassi stratificati: situazioni tipiche e motodi di analisi.” Problemi di stabilità nelle opere geotecniche, G. Barla, and M. Barla, eds., Pàtron, Bologna, Italy, 93–124.
Hart, J. K., and Martinez, K. (2006). “Environmental sensor networks: A revolution in the earth system science?” Earth Sci. Rev., 78(3), 177–191.
Ida, Y. (1972). “Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy.” J. Geophys. Res., 77(20), 3796–3805.
Intrieri, E., Gigli, G., Mugnai F., Fanti, R., and Casagli, N. (2012). “Design and implementation of a landslide early warning system.” Eng. Geol., 147–148, 124–136.
Lisjak, A., and Grasselli, G. (2010). “Rock impact modelling using FEM/DEM.” Proc., 5th Int. Conf. on Discrete Elements Methods – DEM5, Queen Mary Univ. of London, London.
Lisjak, A., and Grasselli, G. (2011). “Combined finite-discrete element analysis of rock slope stability under dynamic loading.” Proc., 2011 PAN-American CGS Geotechnical Conf., Canadian Geotechnical Society, Richmond, BC, Canada.
Lisjak, A., Liu, Q., Zhao, Q., Mahabadi, O. K., and Grasselli, G. (2013). “Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis.” Geophys. J. Int.
Lorig, L. J., Brady, B. H., and Cundall, P. A. (1986). “Hybrid distinct element-boundary element analysis of jointed rock.” Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 23(4), 303–312.
Mahabadi, O. K., Grasselli, G., and Munjiza, A. (2010a). “Y-GUI: A graphical user interface and pre-processor for the combined finite-discrete element code, Y2D, incorporating material inhomogeneity.” Comp. Geosci., 36, 241–252.
Mahabadi, O. K., Lisjak, A., Grasselli, G., Lukas, T., and Munjiza, A. (2010b). “Numerical modelling of a triaxial test of homogeneous rocks using the combined finite-discrete element method.” Proc., Rock Mechanics in Civil and Environmental Engineering (Eurock 2010), J. Zhao,V. Labiouse,J. Dudt, and J. Mathier, eds., A.A. Balkema, Lausanne, Switzerland, 173–176.
Mahabadi, O. K., Lisjak, A., Munjiza, A., and Grasselli, G. (2012). “Y-Geo: New combined finite-discrete element numerical code for geomechanical applications.” Int. J. Geomech., 676–688.
Malvar, L. J., and Warren, G. E. (1988). “Fracture energy for three-point bending tests on single-edge-notched beams.” Exp. Mech., 28(3), 226–272.
Munjiza, A. (2004). The combined finite-discrete element method, John Wiley & Sons, New York.
Munjiza, A., and Andrews, K. (2000). “Penalty function method for combined finite-discrete element systems comprising large number of separate bodies.” Int. J. Numer. Methods Eng., 49(11), 1377–1396.
Munjiza, A., and John, N. W. M. (2002). “Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms.” Eng. Fract. Mech., 69(2), 281–295.
Munjiza, A., Owen, D., and Bicanic, N. (1995). “A combined finite-discrete element method in transient dynamics of fracturing solids.” Eng. Comput., 12(2), 145–174.
Mustoe, G. G. W. (1992). “A generalized formulation of the discrete element method.” Eng. Comput., 9(2), 181–190.
Piovano, G., Antolini, F., Barla, M., and Barla, G. (2013). “Continuum-discontinuum modelling of failure and evolution mechanisms of deep seated landslides.” 6th Int. Conf. on Discrete Element Method, Colorado School of Mines, Golden, CO, 295–300.
Piovano, G., Barla, G., and Barla, M. (2011). “FEM/DEM modeling of a slope instability on a circular sliding surface.” Proc., IACMAG 2011, Centre for Infrastructure Engineering and Safety, Sydney, Melbourne, Australia.
ELFEN 2.8 [Computer software]. Rockfield Software Ltd., Swansea, U.K.
Salciarini, D., Tamagnini, C., and Conversini P. (2009). “Discrete element modeling of debris-avalanche impact on earthfill barriers.” Phys. Chem. Earth, 35(3–5), 172–181.
CUBIT 11.1 [Computer software]. Sandia National Laboratories, Albuquerque, NM.
Saouma, V. E., and Kleinosky, M.-J. (1984). “Finite element simulation of a rock cutting: A fracture mechanics approach.” Proc., 25th US Symp. on Rock Mechanics, ARMA 1984, American Rock Mechanics Association, Alexandria, VA, 792–799.
Stead, D., and Coggan, J. (2006). “Numerical modelling of rock slopes using a total slope failure approach.” Landslides from massive rock slope failure. Proc. of the NATO Advanced Reasearch Workshop on Massive Rock Slope failure: New Models for Hazard Assessment, S. G. Evans,G. Scarascia Mugnozza,A. Strom, and R. L. Hermanss, eds., Springer, Dordrecht, The Netherlands, 129–138.
Stead, D., Coggan, J., and Eberhardt, E. (2004). “Realistic simulation of rock slope failure mechanisms: The need to incorporate principles of fracture mechanics.” Int. J. Rock Mech. Min. Sci., 41(3), 563–568.
Stead, D., Eberhardt, E., and Coggan, J. (2006). “Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques.” Eng. Geol., 83(1–3), 217–235.
Swenson, D. V., and Ingraffea A. R. (1988). “Modeling mixed-mode dynamic crack propagation using finite elements: Theory and applications.” Comput. Mech., 3(6), 187–192.
Verdone, R., Dardari, D., Mazzini, G., and Conti, A. (2010). Wireless sensor and actuator networks, Elsevier Academic Press, London.
Wawrzynek, P., and Ingraffea, A. R. (1989). “An interactive approach to local remeshing around a propagating crack.” Finite Elem. Anal. Des., 5(1), 87–96.
Williams, J., Hocking, G., and Mustoe, G. G. W. (1985). “The theoretical basis of discrete element methods.” NUMETA 85, Proc. of the Int. Congress on Numerical Methods in Engineering, Swansea, J. Middleton andG. N. Pande, eds., Swansea Univ., Swansea, U.K. 897–906.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 16Issue 6December 2016

History

Received: Aug 6, 2014
Accepted: Dec 18, 2015
Published online: Feb 26, 2016
Discussion open until: Jul 26, 2016
Published in print: Dec 1, 2016

Permissions

Request permissions for this article.

Authors

Affiliations

Francesco Antolini [email protected]
Research Assistant, Dept. of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (corresponding author). E-mail: [email protected]
Marco Barla
Research Associate, Dept. of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Giovanni Gigli
Research Associate, Dept. of Earth Sciences, Univ. degli Studi di Firenze, Via La Pira 4, 50121 Firenze, Italy.
Andrea Giorgetti
Associate Professor, Dept. of Electrical and Information Engineering Guglielmo Marconi, Univ. di Bologna, Viale del Risorgimento 2, 40139 Bologna, Italy.
Emanuele Intrieri
Research Assistant, Dept. of Earth Sciences, Univ. degli Studi di Firenze, Via La Pira 4, 50121 Firenze, Italy.
Nicola Casagli
Professor, Dept. of Earth Sciences, Univ. degli Studi di Firenze, Via La Pira 4, 50121 Firenze, Italy.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share