SPECIAL ISSUE EDITORS: Chandrakant S. Desai, Musharraf M. Zaman, and D. N. Singh
Jul 2, 2011

Particle-Based Discrete Element Modeling: Geomechanics Perspective

Publication: International Journal of Geomechanics
Volume 11, Issue 6

Abstract

This paper is a review of the use of particulate discrete element modeling (DEM) in geomechanics. The overall objective of the paper is to serve as an introduction to researchers and practitioners in geomechanics who are considering adopting DEM in their work or using the results of DEM simulations to guide other studies, for example, the development of constitutive models for continuum-based numerical analysis. It is hoped that prior converts to the use of DEM will also benefit from a relatively objective overview of current DEM use in geomechanics. The introductory sections present the background to the method and give an overview of the evolution of the use of particulate DEM in recent geotechnical research. The general principals of the algorithm are then presented, considering the types of particles typically used, the calculation of contact forces, and formulation of simulation boundary conditions. Some techniques available to interpret and postprocess of DEM results and provide the information to link the particle scale and overall response are outlined. Approaches used to validate and calibrate DEM models to verify that DEM simulation results representative of physical reality are discussed. An overview of the application of DEM modeling to field-scale problems is then presented. Finally the conclusions consider future developments in the area and emphasize the need to maintain quality in DEM simulations.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Interactions with past and current collaborators have played a large role in the development of this paper. The most notable interactions were with Professor J. D. Bray and Dr. D. Doolin at U. C. Berkeley, Dr. L. Cui at University College Dublin, Mr. D. Barretto, Ms. G. Cheung and Professor M. Coop at Imperial College London. Dr. B. van Wachem of Imperial College London provided some very useful references from the chemical engineering literature.

References

Abbas, A., Masad, E., Papagiannakis, T., and Harman, T. (2007). “Micromechanical modeling of the viscoelastic behavior of asphalt mixtures using the discrete-element method.” Int. J. Geomech., 7(2), 131–139.
Anandarajah, A. (2003). “Discrete element modeling of leaching induced apparent overconsolidation in kaolinite.” Soils Found., 43(6), 1–12.
Bagi, K. (1996). “Stress and strain in granular assemblies.” Mech. Mater., 22(3), 165–177.
Bagi, K. (2005). “An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies.” Granular Matter, 7(1), 31–43.
Barreto, D., O’Sullivan, C., and Zdravkovic, L. (2009). “Quantifying the evolution of soil fabric under different stress paths.” Proc., 6th Int. Conf. on Micromechanics of Granular Media Golden, M. Nakagawa and S. Luding, eds., American Institute of Physics, College Park, MD.
Been, K., and Jefferies, M. G. (1985). “A state parameter for sands.” Geotechnique, 35(2), 99–112.
Behringer, R. P., Daniels, K. E., Majmudar, T. S., and Sperl, M. (2008). “Fluctuations, correlations, and transitions in granular materials: Statistical mechanics for a non-conventional system.” Philos. Trans. R. Soc. A, 366(1865), 493–504.
Bertrand, D., Nicot, F., Gotteland, P., and Lambert, S. (2005). “Modelling a geo-composite cell using discrete analysis.” Comput. Geotech., 32(8), 564–577.
Bolton, M. D., Nakata, Y., and Cheng, Y. P. (2008). “Micro- and macro-mechanical behaviour of DEM crushable materials.” Geotechnique, 58(6), 471–480.
Butlanska, J., Arroyo Alvarez de Toledo, M., and Gens Solé, A. (2009). “Homogeneity and symmetry in DEM models of cone penetration.” Proc., 6th Int. Conf. on Micromechanics of Granular Media Golden, M. Nakagawa and S. Luding, eds., American Institute of Physics, College Park, MD, 425–428.
Camborde, F., Mariotti, C., and Donze, F. V. (2000). “Numerical study of rock and concrete behaviour by discrete element modelling.” Comput. Geotech., 27(4), 225–247.
Carrillo, A. R., West, J. E., Horner, D. A., and Peters, J. F. (1999). “Interactive large-scale soil modeling using distributed high performance computing environments.” Int. J. High Perform. Comput. Appl., 13(1), 33–48.
Cavarretta, I., Coop, M., and O’Sullivan, C. (2010). “The influence of particle characteristics on the behaviour of coarse grained soils.” Géotechnique, 60(6), 413–423.
Chang, C. S. (1993). “Micromechanical modeling of deformation and failure for granulates with frictional contacts.” Mech. Mater., 16(1-2), 13–24.
Chang, C. S., and Liao, C. (1990). “Constitutive relations for particulate medium with the effect of particle rotation.” Int. J. Solids Struct., 26(4), 437–453.
Cheng, Y. P., Bolton, M. D., and Nakata, Y. (2004). “Crushing and plastic deformation of soils simulated using DEM.” Géotechnique, 54(2), 131–141.
Cheng, Y. P., Nakata, Y., and Bolton, M. D. (2003). “Discrete element simulation of crushable soil.” Géotechnique, 53(7), 633–641.
Cheung, G., and O’Sullivan, C. (2008). “Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations.” Particuology, 6(6), 483–500.
Christoffersen, J., Mehrabadi, M. M., and Nemat-Nasser, S. (1981). “A micro-mechanical description of granular material behaviour.” J. Appl. Mech., 48(2), 339–344.
Cleary, P. W. (2000). “DEM simulation of industrial particle flows: Case studies of dragline excavators, mixing in tumblers and centrifugal mills.” Powder Technol., 109(1-2), 83–104.
Collop, A. C., McDowell, G. R., and Lee, Y. (2007). “On the use of discrete element modelling to simulate the viscoelastic deformation of an idealized asphalt mixture.” Geomech. Geoeng., 2(2), 77–86.
Commonwealth Scientific and Industrial Research Organisation (CSIRO). (2009). “Computational modelling of fluid and particulate dynamics.” 〈http://www.csiro.au/science/CMIScfd.html〉 (Jul. 2009).
Cook, B. K., Lee, M. Y., DiGiovanni, A. A., Bronowski, D. R., Perkins, E. D., and Williams, J. R. (2004). “Discrete element modeling applied to laboratory simulation of near-wellbore mechanics.” Int. J. Geomech., 4(1), 19–27.
Cowin, S. C. (1985). “The relationship between the elasticity tensor and the fabric tensor.” Mech. Mater., 4(2), 137–147.
Cui, L., and O’Sullivan, C. (2006). “Exploring the macro- and micro-scale response characteristics of an idealized granular material in the direct shear apparatus.” Geotechnique, 56(7), 455–468.
Cui, L., O’Sullivan, C., and O’Neill, S. (2007). “An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model.” Geotechnique, 57(10), 831–844.
Cundall, P. A. (1988). “Computer simulations of dense sphere assemblies.” Micromechanics of granular materials, M. Satake and J. T. Jenkins, ed., Elsevier Science, Amsterdam, Netherlands, 113–123.
Cundall, P. A. (2001). “A discontinuous future for numerical modelling in geomechanics?” Proc. Instit. Civ. Eng. Geotech. Eng., 149(1), 41–47.
Cundall, P., and Strack, O. (1979). “A discrete numerical model for granular assemblies.” Geotechnique, 29(1), 47–65.
DEM Solutions. (2009). “EDEM.” 〈http://www.dem-solutions.com/〉 (Jul. 2009).
Drescher, A., and De Josselin de Jong, G. (1972). “Photoelastic verification of a mechanical model for the flow of a granular material.” J. Mech. Phys. Solids, 20(5), 337–351.
Duran, J. (2000). Sands, powders, and grains: An introduction to the physics of granular materials, Springer, New York.
El Shamy, U., and Gröger, T. (2008). “Micromechanical aspects of the shear strength of wet granular soils.” Int. J. Numer. Anal. Methods Geomech., 32(14), 1763–1790.
Fakhimi, J., Riedel, J., and Labuz, J. F. (2006). “Shear banding in sandstone: Physical and numerical studies.” Int. J. Geomech., 6(3), 185–194.
Favier, J. F., Abbaspour-Fard, M. H., and Kremmer, M. (2001). “Modeling nonspherical particles using multisphere discrete elements.” J. Eng. Mech., 127(10), 971.
Feda, J. (1982). Mechanics of particulate materials, Elsevier Scientific, Amsterdam, Netherlands.
Fonseca, J., O’Sullivan, C., and Coop, M. (2009). “Image segmentation techniques for granular materials.” Proc., 6th Int. Conf. on Micromechanics of Granular Media, M. Nakagawa and S. Luding, eds., American Institute of Physics, College Park, MD, 223–226.
Gili, J. A., and Alonso, E. E. (2002). “Microstructural deformation mechanisms of unsaturated granular soils.” Int. J. Numer. Anal. Methods Geomech., 26(5), 433–468.
Holst, J. M. F. G., Rotter, J. M., Ooi, J. Y., and Rong, G. H. (1999). “Numerical modelling of silo filling, II: Discrete element analysis.” J. Eng. Mech., 125(1), 104–110.
Holtzman, R., Silin, D. B., and Patzek, T. W. (2009). “Mechanical properties of granular materials: A variational approach to grain-scale simulation.” Int. J. Numer. Anal. Methods Geomech., 33(3), 391–404.
Hoomans, B. P. B., Kuipers, J. A. M., Briels, W. J., and Van Swaaij, W. P. M. (1996). “Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: A hard-sphere approach.” Chem. Eng. Sci., 51(1), 99–108.
Horner, D. A., Carrillo, D. A., Peters, J. F., and West, J. E. (1998). “High resolution soil vehicle interaction modeling.” Mech. Based Des. Struct. Mach., 26(3), 305–318.
Huang, A. B., and Ma, M. Y. (1994). “An analytical study of cone penetration tests in granular material.” Can. Geotech. J., 31(1), 91–103.
Huang, H., and Detournay, E. (2008). “Intrinsic length scales in tool-rock interaction.” Int. J. Geomech., 8(1), 39–44.
Iwashita, K., and Oda, M. (1998). “Rolling resistance at contacts in simulation of shear band development by DEM.” J. Eng. Mech., 124(3), 285–292.
Jean, M. (1999). “The non-smooth contact dynamics method.” Comput. Methods Appl. Mech. Eng., 177(3-4), 235–257.
Jenck, O., Dias, D., and Kastner, R. (2009). “Discrete element modelling of a granular platform supported by piles in soft soil—Validation on a small scale model test and comparison to a numerical analysis in a continuum.” Comput. Geotech., 36(6), 917–927.
Jerier, J.-F., Imbault, D., Donze, F. V., and Doremus, P. (2008). “A geometric algorithm based on tetrahedral meshes to generate a dense polydisperse sphere packing.” Granular Matter, 11(1), 43–52.
Jiang, M. J., Leroueil, S., and Konrad, J. M. (2004). “Insight into shear strength functions of unsaturated granulates by DEM analyses.” Comput. Geotech., 31(6), 473–489.
Jiang, M. J., Leroueil, S., Zhu, H., Yu, H.-S., and Konrad, J.-M. (2009). “Two-dimensional discrete element theory for rough particles.” Int. J. Geomech., 9(1), 20–33.
Jiang, M. J., Yu, H.-S., and Harris, D. (2005). “A novel discrete model for granular material incorporating rolling resistance.” Comput. Geotech., 32(5), 340–357.
Jiang, M. J., Yu, H.-S., and Harris, D. (2006). “Discrete element modelling of deep penetration in granular soils.” Int. J. Numer. Anal. Methods Geomech., 30(4), 335–361.
Johnson, K. L. (1985). Contact mechanics, Cambridge University, Cambridge, U.K.
Kafui, K. D., Thornton, C., and Adams, M. J. (2002). “Discrete particle-continuum fluid modelling of gas-solid fluidised beds.” Chem. Eng. Sci., 57(13), 2395–2410.
Kanatani, K. (1984). “Distribution of directional data and fabric tensors.” Int. J. Eng. Sci., 22(2), 149–164.
Ke, T. C., and Bray, J. D. (1995). “Modelling of particulate media using discontinuous deformation analysis.” J. Eng. Mech., 121(11), 1234–1243.
Kinloch, H., and O’Sullivan, C. (2007). “A micro-mechanical study of the influence of penetrometer geometry on failure mechanisms in granular soils.” Advances in measurement and modelling of soil behaviour, D. J. DeGroot, C. Vipulanandan, J. A. Yamamuro, V. N. Kaliakin, P. V. Lade, M. Zeghal, U. El shamy, N. Lu and C. R. Song, eds., ASCE, Reston, VA.
Kozicki, J., and Donzé, F. V. (2008). “A new open-source software developed for numerical simulations using discrete modeling methods.” Comput. Methods Appl. Mech. Eng., 197(49-50), 4429–4443.
Kuhn, M. R., and Mitchell, J. K. (1992). “The modeling of soil creep with the discrete element method.” Eng. Comput., 9(2), 277–287.
Kulatilake, P. H. S. W., Malama, B., and Wang, J. (2001). “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading.” Int. J. Rock Mech. Min. Sci., 38(5), 641–657.
Lin, X., and Ng, T.-T. (1997). “A three-dimensional discrete element model using arrays of ellipsoids.” Géotechnique, 47(2), 319–329.
Lobo-Guerrero, S., and Vallejo, L. E. (2005). “DEM analysis of crushing around driven piles in granular materials.” Géotechnique, 55(8), 617–623.
Lu, N., Anderson, M. T., Likos, W. J., and Mustoe, G. W. (2008). “A discrete element model for kaolinite aggregate formation during sedimentation.” Int. J. Numer. Anal. Methods Geomech., 32(8), 965–980.
Maeda, K. (2009). “Critical state-based geo-micromechanics on granular flow.” Proc., 6th Int. Conf. on Micromechanics of Granular Media, M. Nakagawa and S. Luding, eds., American Institute of Physics, College Park, MD, 17–24.
Masson, S., and Martinez, J. (2001). “Micromechanical analysis of the shear behavior of a granular material.” J. Eng. Mech., 127(10), 1007–1016.
Matsushima, T., Saomoto, H., Tsubokawa, Y., and Yamada, Y. (2003). “Grain rotation versus continuum rotation during shear deformation of granular assembly.” Soils Found., 43(4), 95.
McDowell, G. R., and Harireche, O. (2002). “Discrete element modelling of soil particle fracture.” Geotechnique, 52(2), 131–135.
Mindlin, R. D., and Deresiewicz, H. (1953). “Elastic spheres in contact under varying oblique forces.” J. Appl. Mech., 20(5), 327–344.
Munjiza, A., Latham, J. P., and John, N. W. M. (2003). “3D dynamics of discrete element systems comprising irregular discrete elements—Integration solution for finite rotations in 3D.” Int. J. Numer. Methods Eng., 56(1), 35–55.
Nakagawa, M., and Luding, S. (2009). “Powders and grains 2009.” Proc., 6th Int. Conf. on Micromechanics of Granular Media, American Institute of Physics, College Park, MD.
National Academy of Sciences. (2006). Geological and geotechnical engineering in the new millennium: Opportunities for research and technological innovation, The National Academies, Washington, DC.
Nezami, G., Hashash, Y. M. A., Zhao, D., and Ghaboussi, J. (2007). “Simulation of front end loader bucket-soil interaction using discrete element method.” Int. J. Numer. Anal. Methods Geomech., 31(9), 1147–1162.
Ng, T.-T. (2004). “Shear strength of assemblies of ellipsoidal particles.” Géotechnique, 54(10), 659–670.
Ng, T.-T., and Dobry, R. (1994). “Numerical simulations of monotonic and cyclic loading of granular soil.” J. Geotech. Eng., 120(2), 388–403.
Oda, M., and Iwashita, K. (1999). Mechanics of granular materials: An introduction, Balkema, Rotterdam, Netherlands.
Oda, M., Konishi, J., and Nemat-Nasser, S. (1980). “Some experimentally based fundamental results on the mechanical behaviour of granular materials.” Géotechnique, 30(4), 479–495.
O’Sullivan, C. (2002). “The application of discrete element modeling to finite deformation problems in geomechanics.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of California, Berkeley.
O’Sullivan, C., and Bray, J. D. (2003). “A modified shear spring formulation for discontinuous deformation analysis of particulate media.” J. Eng. Mech., 129(7), 830–834.
O’Sullivan, C., Bray, J. D., and Riemer, M. F. (2002). “The influence of particle shape and surface friction variability on macroscopic frictional strength of rod-shaped particulate media.” J. Eng. Mech., 128(11), 1182–1192.
O’Sullivan, C., Bray, J. D., and Riemer, M. (2004). “Examination of the response of regularly packed specimens of spherical particles using physical tests and discrete element simulations.” J. Eng. Mech., 130(10), 1140–1150.
O’Sullivan, C., and Cui, L. (2009). “Micromechanics of granular material response during load reversals: Combined DEM and experimental study.” Powder Technol., 193(3), 289.
Peron, H., Delenne, J. Y., Laloui, L., and El Youssoufi, M. S. (2009). “Discrete element modelling of drying shrinkage and cracking of soils.” Comput. Geotech., 36(1-2), 61–69.
PFC 2D Version 4.0 [Computer software]. (2009a). Itasca Consulting Group, Inc., Minneapolis, MN.
PFC 3D Version 4.0 [Computer software]. (2009b). Itasca Consulting Group, Inc., Minneapolis, MN.
Poschel, T., and Schwager, T. (2005). Computational granular dynamics, Springer, Berlin.
Potts, D. M. (2003). “Numerical analysis: A virtual dream or practical reality?” Géotechnique, 53(6), 535.
Potyondy, D. O., and Cundall, P. A. (2004). “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 41(8), 1329–1364.
Powrie, W., Ni, Q., Harkness, R. M., and Zhang, X. (2005). “Numerical modelling of plane strain tests on sands using a particulate approach.” Géotechnique, 55(4), 297–306.
Richefeu, V., El Youssoufi, M. S., Peyroux, R., and Radjaï, F. (2008). “A model of capillary cohesion for numerical simulations of 3D polydisperse granular media.” Int. J. Numer. Anal. Methods Geomech., 32(11), 1365–1383.
Robertson, D. (2000). “Numerical simulations of crushable aggregates.” Ph.D. dissertation, Univ. of Cambridge, Cambridge, U.K.
Rothenburg, L., and Bathurst, R. J. (1989). “Analytical study of induced anisotropy in idealized granular materials.” Géotechnique, 39(4), 601–614.
Rowe, P. W. (1962). “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc., Roy. Soc. Lond. Ser. A, 269(1339), 500–527.
Satake, M. (1978). “Constitution of mechanics of granular materials through graph representation.” Theoretical and applied mechanics 26, Univ. of Tokyo, 257.
Scholtès, L., Hicher, P.-Y., Nicot, F., Chareyre, B., and Darve, F. (2009). “On the capillary stress tensor in wet granular materials.” Int. J. Numer. Anal. Methods Geomech., 33(10), 1289–1313.
Shafipour, R., and Soroush, A. (2008). “Fluid coupled-DEM modelling of undrained behavior of granular media.” Comput. Geotech., 35(5), 673–685.
Shi, G.-H (1988). “Discontinuous deformation analysis, a new numerical model for the statics and dynamics of block systems.” Ph.D. thesis, Dept. Civil and Environmental Engineering, Univ. of California, Berkeley.
Shi, G-H., and Goodman, R. E. (1985). “Two-dimensional discontinuous deformation analysis.” Int. J. Numer. Anal. Methods Geomech., 9(6), 541–556.
Silvani, C., Désoyer, T., and Bonelli, S. (2009). “Discrete modelling of time-dependent rockfill behaviour.” Int. J. Numer. Anal. Methods Geomech., 33(5), 665–685.
Simpson, B., and Tatsuoka, F. (2008). “Geotechnics: The next 60 years.” Géotechnique, 58(5), 357–368.
Suzuki, K., et al. (2007). “Simulation of upward seepage flow in a single column of spheres using discrete-element method with fluid-particle interaction.” J. Geotech. and Geoenvir. Eng., 133(1), 104–109.
Thomson Reuters. (2009). “ISI web of knowledge database.” 〈http://www.isiwebofknowledge.com/〉 (May 2009).
Thornton, C. (1979). “The conditions for failure of a face-centered-cubic array of uniform rigid spheres.” Géotechnique, 29(4), 441–459.
Thornton, C. (1999). “Interparticle relationships between forces and displacements.”Mechanics of granular materials, M. Oda and K. Iwashita, eds., A. A. Balkema, Rotterdam, Netherlands, 207–217.
Thornton, C. (2000). “Numerical simulations of deviatoric shear deformation of granular media.” Géotechnique, 50(1), 43–53.
Thornton, C. (2009). “Preface to special issue on discrete element methods.” Powder Technol., 193(3), 215.
Thornton, C., and Yin, K. K. (1991). “Impact of elastic spheres with and without adhesion.” Powder Technol., 65(1-3), 153–166.
Tsuji, Y., Kawaguchi, T., and Tanaka, T. (1993). “Discrete particle simulation of two-dimensional fluidized bed.” Powder Technol., 77(1), 79–87.
Utili, S., and Nova, R. (2008). “DEM analysis of bonded granular geomaterials.” Int. J. Numer. Anal. Methods Geomech., 32(17), 1997–2031.
Walton, O. R., and Braun, R. L. (1986). “Viscosity, granular-temperature and stress calculations for shearing assemblies of inelastic, frictional disks.” J. Rheol., 30(5), 949–980.
Wang, C., Tannant, D. D., and Lilly, P. A. (2003a). “Numerical analysis of the stability of heavily jointed rock slopes using PFC2D.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 40(3), 415–424.
Wang, J., Gutierrez, M. S., and Dove, J. E. (2007). “Numerical studies of shear banding in interface shear tests using a new strain calculation method.” Int. J. Numer. Anal. Methods Geomech., 31(12), 1349–1366.
Wang, X., Chan, D., and Morgenstern, N. (2003b). “Kinematic modelling of shear band localization using discrete finite elements.” Int. J. Numer. Anal. Methods Geomech., 27(4), 289–324.
Wang, Y.-H., and Leung, S.-C. (2008). “A particulate-scale investigation of cemented sand behaviour.” Can. Geotech. J., 45(1), 29–44.
Wang, Y.-H., Xu, D., and Tsui, K. Y. J. (2008). “Discrete element modeling of contact creep and aging in sand.” Geotech. and Geoenviron. Eng., 134(9), 1407–141.
Xiang, J., Latham, J. P., and Munjiza, A. (2009). “Virtual geoscience workbench.” 〈http://sourceforge.net/projects/vgw/develop〉 (Jul. 2009).
Yoon, J. (2007). “Application of experimental design and optimization to {PFC} model calibration in uniaxial compression simulation.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 44(6), 871–889.
Zdravkovic, L., and Carter, J. (2008). “Contributions to Géotechnique, 1948-2008: Constitutive and numerical modelling.” Géotechnique, 58(5), 405–412.
Zeghal, M., and El Shamy, U. (2004). “A continuum-discrete hydromechanical analysis of granular deposit liquefaction.” Int. J. Numer. Anal. Methods Geomech., 28(14), 1361–1383.
Zhu, H. P., and Yu, A. B. (2008). “Preface to special edition on simulation and modeling of particulate systems.” Particuology, 6(6), 389.
Zhu, H. P., Zhou, Z. Y., Yang, R. Y., and Yu, A. B. (2007). “Discrete particle simulation of particulate systems: Theoretical developments.” Chem. Eng. Sci., 62(13), 3378–3396.
Zhu, H. P., Zhou, Z. Y., Yang, R. Y., and Yu, A. B. (2008). “Discrete particle simulation of particulate systems: A review of major applications and findings.” Chem. Eng. Sci., 63(23), 5728–5770.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 11Issue 6December 2011
Pages: 449 - 464

History

Received: Jul 28, 2009
Accepted: Jun 30, 2011
Published online: Jul 2, 2011
Published in print: Dec 1, 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Catherine O’Sullivan [email protected]
Ph.D.
Senior Lecturer, Skempton Building, Imperial College London, London SW7 2AZ, U.K. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share