Technical Papers
Jun 12, 2021

Flame Structure and Soot-Precursor Formation of Coflow n-Heptane Diffusion Flame Burning in O2/N2 and O2/CO2 Atmosphere

Publication: Journal of Energy Engineering
Volume 147, Issue 4

Abstract

Oxycombustion allied with flue gas recirculation is a promising combustion technology owing to its potential to enhance combustion while reducing pollutant emissions. This numerical work investigated the effects of CO2 dilution under oxygen enrichment conditions on the flame structure and soot precursor formation in an n-heptane coflow diffusion flame. The numerical approach considered kinetic chemistry, thermal and transport properties, and a radiative heat transfer model. The oxygen content in the oxidizer stream was varied from 30% to 60% O2 (molar basis) with N2 or CO2 as diluent. The chemical effect of CO2 diluent was isolated numerically from its total thermal effect using an inert counterpart fictitious CO2. Results demonstrated that increasing O2 concentration significantly increased the flame temperature and soot precursor species, whereas a notable reduction of flame height occurred with increasing O2. Soot precursors were suppressed by replacing N2 with CO2 in the coflow oxidizer through not only thermal effects but also through chemical effects. The primary pathway for the chemical effect of CO2 is the reaction CO2+H=CO+OH, which decreases H radicals. The results also showed that CO2 the effect of CO2 was more profound at lower oxygen conditions, indicating that the inhibition effect of CO2 could be restricted in higher oxygen conditions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code used during the study appear in the published article.

Acknowledgments

This work was supported by the National Natural Science foundation of China (NSFC No. 51876083).

References

Appel, J., H. Bockhorn, and M. Frenklach. 2000. “Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons.” Combust. Flame 121 (1): 122–136. https://doi.org/10.1016/S0010-2180(99)00135-2.
Berta, P., S. K. Aggarwal, and I. K. Puri. 2006. “An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species.” Combust. Flame 145 (4): 740–764. https://doi.org/10.1016/j.combustflame.2006.02.003.
Bisetti, F., G. Blanquart, M. E. Mueller, and H. Pitsch. 2012. “On the formation and early evolution of soot in turbulent nonpremixed flames.” Combust. Flame 159 (1): 317–335. https://doi.org/10.1016/j.combustflame.2011.05.021.
Blanquart, G., P. Pepiot-Desjardins, and H. Pitsch. 2009. “Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors.” Combust. Flame 156 (3): 588–607. https://doi.org/10.1016/j.combustflame.2008.12.007.
Bond, T. C., et al. 2013. “Bounding the role of black carbon in the climate system: A scientific assessment.” J. Geophys. Res. Atmos. 118 (11): 5380–5552. https://doi.org/10.1002/jgrd.50171.
Boot-Handford, M. E., et al. 2014. “Carbon capture and storage update.” Energy Environ. Sci. 7 (1): 130–189. https://doi.org/10.1039/C3EE42350F.
Cao, S., B. Ma, D. Giassi, B. A. V. Bennett, M. B. Long, and M. D. Smooke. 2017. “Effects of pressure and fuel dilution on coflow laminar methane–air diffusion flames: A computational and experimental study.” Combust. Theor. Model. 22 (2): 316–337. https://doi.org/10.1080/13647830.2017.1403051.
Chapman, S., and T. G. Cowling. 1990. The mathematical theory of non-uniform gases. 3rd ed. Cambridge, UK: Cambridge University Press.
Degirmenci, E., A. Alazreg, and F. Inal. 2020. “Detailed chemical kinetic modeling of fuel-rich n-heptane flame.” Fuel 259 (Jan): 116228. https://doi.org/10.1016/j.fuel.2019.116228.
Du, D. X., R. L. Axelbaum, and C. K. Law. 1989. “Experiments on the sooting limits of aerodynamically-strained diffusion flames.” Symp. (Int.) Combust. 22 (1): 387–394. https://doi.org/10.1016/S0082-0784(89)80045-1.
Du, J., and R. L. Axelbaum. 1995. “The effect of flame structure on soot-particle inception in diffusion flames.” Combust. Flame 100 (3): 367–375. https://doi.org/10.1016/0010-2180(94)00136-G.
Gülder, Ö. L. 1989. “Influence of hydrocarbon fuel structural constitution and flame temperature on soot formation in laminar diffusion flames.” Combust. Flame 78 (2): 179–194. https://doi.org/10.1016/0010-2180(89)90124-7.
Ipek, O., B. Gürel, and M. Kan. 2017. “Numerical analysis of oxy-coal combustion system burning pulverized coal mixed with different flue gas mass flow rates.” J. Energy Eng. 143 (2): 04016053. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000409.
Kalvakala, K. C., V. R. Katta, and S. K. Aggarwal. 2018. “Effects of oxygen-enrichment and fuel unsaturation on soot and NOx emissions in ethylene, propane, and propene flames.” Combust. Flame 187 (Jan): 217–229. https://doi.org/10.1016/j.combustflame.2017.09.015.
Karataş, A. E., and Ö. L. Gülder. 2012. “Soot formation in high pressure laminar diffusion flames.” Prog. Energy Combust. Sci. 38 (6): 818–845. https://doi.org/10.1016/j.pecs.2012.04.003.
Lei, M., C. Sun, and C. Wang. 2019. “Effect of CO2 and H2O gasifications on the burning behavior and NO release process of pulverized coal at low oxygen concentrations during oxy-fuel combustion.” J. Energy Eng. 145 (2): 04019003. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000598.
Li, G., M. Zhou, Z. Zhang, J. Liang, and H. Ding. 2018. “Experimental and kinetic studies of the effect of CO2 dilution on laminar premixed n-heptane/air flames.” Fuel 227 (Sep): 355–366. https://doi.org/10.1016/j.fuel.2018.04.116.
Liu, F., H. Guo, G. J. Smallwood, and M. El Hafi. 2004. “Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames.” J. Quant. Spectrosc. Radiat. Transfer 84 (4): 501–511. https://doi.org/10.1016/S0022-4073(03)00267-X.
Liu, F., H. Guo, G. J. Smallwood, and Ö. L. Gülder. 2001. “The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation.” Combust. Flame 125 (1–2): 778–787. https://doi.org/10.1016/S0010-2180(00)00241-8.
Lu, J., X. Ren, and L. Cao. 2016. “Studies on characteristics and formation of soot nanoparticles in an ethylene/air inverse diffusion flame.” J. Energy Eng. 142 (3): 04015041. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000305.
Mahmoud, N. M., F. Yan, and Y. Wang. 2019a. “Effects of fuel inlet boundary condition on aromatic species formation in coflow diffusion flames.” J. Energy Inst. 92 (2): 288–297. https://doi.org/10.1016/j.joei.2018.01.007.
Mahmoud, N. M., F. W. Yan, M. X. Zhou, L. Xu, and Y. Wang. 2019b. “Coupled effects of carbon dioxide and water vapor addition on soot formation in ethylene diffusion flames.” Energy Fuels 33 (6): 5582–5596. https://doi.org/10.1021/acs.energyfuels.9b00192.
Mahmoud, N. M., W. Zhong, T. Abdalla, Q. Wang, and E. M. A. Edreis. 2020. “Chemical effects of CO2 and H2O addition on aromatic species in ethanol/air diffusion flame.” Combus. Sci. Technol. 1–19. https://doi.org/10.1080/00102202.2020.1776705.
Melius, C. F., M. E. Colvin, N. M. Marinov, W. J. Pit, and S. M. Senkan. 1996. “Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety.” Symp. (Int.) Combust. 26 (1): 685–692. https://doi.org/10.1016/S0082-0784(96)80276-1.
Moskaleva, L. V., A. M. Mebel, and M. C. Lin. 1996. “The CH3+C5H5 reaction: A potential source of benene at high temperatures.” Symp. (Int.) Combust. 26 (1): 521–526. https://doi.org/10.1016/S0082-0784(96)80255-4.
Narayanaswamy, K., G. Blanquart, and H. Pitsch. 2010. “A consistent chemical mechanism for oxidation of substituted aromatic species.” Combust. Flame 157 (10): 1879–1898. https://doi.org/10.1016/j.combustflame.2010.07.009.
Nemitallah, M. A., M. A. Habib, H. M. Badr, S. A. Said, A. Jamal, R. Ben-Mansour, E. M. A. Mokheimer, and K. Mezghani. 2017. “Oxy-fuel combustion technology: Current status, applications, and trends.” Int. J. Energy Res. 41 (12): 1670–1708. https://doi.org/10.1002/er.3722.
Park, J., S.-G. Kim, K.-M. Lee, and T. K. Kim. 2002. “Chemical effect of diluents on flame structure and NO emission characteristic in methane-air counterflow diffusion flame.” Int. J. Energy Res. 26 (13): 1141–1160. https://doi.org/10.1002/er.841.
Park, S., Y. Wang, S. H. Chung, and S. M. Sarathy. 2017. “Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels.” Combust. Flame 178 (Apr): 46–60. https://doi.org/10.1016/j.combustflame.2017.01.001.
Patankar, S. 1980. Numerical heat transfer and fluid flow. Washington, DC: Hemisphere.
Peters, N. 1984. “Laminar diffusion flamelet models in non-premixed turbulent combustion.” Prog. Energy Combust. Sci. 10 (3): 319–339. https://doi.org/10.1016/0360-1285(84)90114-X.
Qiu, L., Y. H. Zheng, Y. Hua, Y. Zhuang, Y. J. Qian, and X. B. Cheng. 2019. “Effects of water vapor addition on the flame structure and soot formation in a laminar ethanol/air coflow flame.” Combust. Sci. Technol. 193 (4): 626–642. https://doi.org/10.1080/00102202.2019.1667340.
Schug, K. P., Y. Manheimer-Timnat, P. Yaccarino, and I. Glassman. 1980. “Sooting behavior of gaseous hydrocarbon diffusion flames and the influence of additives.” Combust. Sci. Technol. 22 (5–6): 235–250. https://doi.org/10.1080/00102208008952387.
Slavinskaya, N. A., and P. Frank. 2009. “A modelling study of aromatic soot precursors formation in laminar methane and ethene flames.” Combust. Flame 156 (9): 1705–1722. https://doi.org/10.1016/j.combustflame.2009.04.013.
Smooke, M. D., R. E. Mitchell, and D. E. Keyes. 1986. “Numerical solution of two-dimensional axisymmetric laminar diffusion flames.” Combust. Sci. Technol. 67 (4–6): 85–122. https://doi.org/10.1080/00102208908924063.
Sun, Z., B. Dally, G. Nathan, and Z. Alwahabi. 2016. “Effects of hydrogen and nitrogen on soot volume fraction, primary particle diameter and temperature in laminar ethylene/air diffusion flames.” Combust. Flame 175 (Jan): 270–282. https://doi.org/10.1016/j.combustflame.2016.08.031.
Sung, C. J., J. B. Liu, and C. K. Law. 1995. “Structural response of counterflow diffusion flames to strain rate variations.” Combust. Flame 102 (4): 481–492. https://doi.org/10.1016/0010-2180(95)00041-4.
Thynell, S. T. 1998. “Discrete-ordinates method in radiative heat transfer.” Int. J. Eng. Sci. 36 (12): 1651–1675. https://doi.org/10.1016/S0020-7225(98)00052-4.
Tingas, E. A., H. G. Im, D. C. Kyritsis, and D. A. Goussis. 2018. “The use of CO2 as an additive for ignition delay and pollutant control in CH4/air autoignition.” Fuel 211 (Jan): 898–905. https://doi.org/10.1016/j.fuel.2017.09.022.
Trees, D., T. Brown, K. Seshadri, M. Smooke, G. Balakrishnan, R. Pitz, V. Giovangigli, and S. Nandula. 1995. “The structure of nonpremixed hydrogen-air flames.” Combust. Sci. Technol. 104 (4–6): 427–439. https://doi.org/10.1080/00102209508907731.
Wang, H., and M. Frenklach. 1997. “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames.” Combust. Flame 110 (1): 173–221. https://doi.org/10.1016/S0010-2180(97)00068-0.
Wang, Y., and S. H. Chung. 2016. “Formation of soot in counterflow diffusion flames with carbon dioxide dilution.” Combust. Sci. Technol. 188 (4–5): 805–817. https://doi.org/10.1080/00102202.2016.1139388.
Wang, Y., and S. H. Chung. 2019. “Soot formation in laminar counterflow flames.” Energy Combust. Sci. 74 (Sep): 152–238. https://doi.org/10.1016/j.pecs.2019.05.003.
Won, S. H., J. Kim, M. K. Shin, S. H. Chung, O. Fujita, T. Mori, J. H. Choi, and K. Ito. 2002. “Normal and microgravity experiment of oscillating lifted flames in coflow.” Proc. Combust. Inst. 29 (1): 37–44. https://doi.org/10.1016/S1540-7489(02)80009-8.
Xiong, Y., M. S. Cha, and S. H. Chung. 2015. “Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames.” Proc. Combust. Inst. 35 (1): 873–880. https://doi.org/10.1016/j.proci.2014.06.025.
Xu, H., F. Liu, S. Sun, Y. Zhao, S. Meng, and W. Tang. 2017. “Effects of H2O and CO2 diluted oxidizer on the structure and shape of laminar coflow syngas diffusion flames.” Combust. Flame 177 (Mar): 67–78. https://doi.org/10.1016/j.combustflame.2016.12.001.
Xu, Q., K. Wang, J. Feng, C. Ding, C. Yu, Z. Du, and Y. Zang. 2020. “Performance analysis of novel flue gas self-circulated burner based on low-NOx combustion.” J. Energy Eng. 146 (2): 04019041. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000645.
Xuan, Y., and G. Blanquart. 2016. “Two-dimensional flow effects on soot formation in laminar premixed flames.” Combust. Flame 166 (Apr): 113–124. https://doi.org/10.1016/j.combustflame.2016.01.007.
Yamamoto, M., S. Duan, and S. Senkan. 2007. “The effect of strain rate on polycyclic aromatic hydrocarbon (PAH) formation in acetylene diffusion flames.” Combust. Flame 151 (3): 532–541. https://doi.org/10.1016/j.combustflame.2006.06.001.
Zhang, C., A. Atreya, and K. Lee. 1992. “Sooting structure of methane counterflow diffusion flames with preheated reactants and dilution by products of combustion.” Symp. (Int.) Combust. 24 (1): 1049–1057. https://doi.org/10.1016/S0082-0784(06)80124-4.
Zhang, Y., F. Liu, and C. Lou. 2018. “Experimental and numerical investigations of soot formation in laminar coflow ethylene flames burning in O2/N2 and O2/CO2 atmospheres at different O2 mole fractions.” Energy Fuels 32 (5): 6252–6263. https://doi.org/10.1021/acs.energyfuels.7b04069.
Zhong, W., Q. Xiang, T. Pachiannan, N. M. Mahmoud, B. Li, Z. He, Q. Wang, and J. Sun. 2021. “Experimental study on in-flame soot formation and soot emission characteristics of gasoline/hydrogenated catalytic biodiesel blends.” Fuel 289 (Apr): 119813. https://doi.org/10.1016/j.fuel.2020.119813.
Zimmer, L., F. M. Pereira, J. A. van Oijen, and L. P. H. de Goey. 2017. “Investigation of mass and energy coupling between soot particles and gas species in modelling ethylene counterflow diffusion flames.” Combust. Theor. Model. 21 (2): 358–379. https://doi.org/10.1080/13647830.2016.1238512.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 147Issue 4August 2021

History

Received: Dec 9, 2020
Accepted: Mar 28, 2021
Published online: Jun 12, 2021
Published in print: Aug 1, 2021
Discussion open until: Nov 12, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral, School of Energy and Power Engineering, Jiangsu Univ., Zhenjiang 212013, China. ORCID: https://orcid.org/0000-0003-1731-9643. Email: [email protected]
Wenjun Zhong [email protected]
Associate Professor, School of Energy and Power Engineering, Jiangsu Univ., Zhenjiang 212013, China. Email: [email protected]
Jamal N. Ibrahim [email protected]
Associate Professor, Mechanical Engineering Department, Faculty of Engineering, Univ. of Sinnar, Sinnar 11174, Sudan. Email: [email protected]
Professor, School of Energy and Power Engineering, Jiangsu Univ., Zhenjiang 212013, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share