Technical Papers
Jun 28, 2021

Experimental and Simulation Study for Two LTD Stirling Engines

Publication: Journal of Energy Engineering
Volume 147, Issue 5

Abstract

The low temperature difference (LTD) Stirling engine is important for solar power application. This study focuses mainly on the influence of physical and geometrical parameters on the operating characteristics of two LTD Stirling engines. It shows that a phase shift of 90°–120° implies the best performance of one of them (electrical powered engine), while the optimum phase shift is about 95°–105° for the other (solar powered engine). In addition, the friction loss increases with increasing rotation speed for both engines. It seems that the friction loss increases with the phase shift for the electrical powered engine, while it attains maximum value at 90° for the solar powered engine. Thermal efficiency first increases with the heating power and then decreases for both engines. Optimum conditions for the maximum indicated power of both Stirling engines are also indicated. Comparison between experimental results of the electrical heating engine and those obtained by simulations with several complexity levels [0-Dimension (0-D), 1-Dimension (1-D), and 2-Dimension (2-D)] has shown that the 1-D model can provide the best simulation results.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All the data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Aksoy, F., and C. Cinar. 2013. “Thermodynamic analysis of a beta-type Stirling engine with rhombic drive mechanism.” Energy Convers. Manage. 75 (Nov): 319–324. https://doi.org/10.1016/j.enconman.2013.06.043.
Andersen, S. K., H. Carlsen, and P. G. Thomsen. 2006. “Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations.” Energy Convers. Manage. 47 (7–8): 894–908. https://doi.org/10.1016/j.enconman.2005.06.006.
Araoz, J. A., E. Cardozo, M. Salomon, L. Alejo, and T. H. Fransson. 2015. “Development and validation of a thermodynamic model for the performance analysis of a gamma Stirling engine prototype.” Appl. Therm. Eng. 83 (May): 16–30. https://doi.org/10.1016/j.applthermaleng.2015.03.006.
Araoz, J. A., M. Salomon, L. Alejo, and T. H. Fransson. 2014. “Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems.” Appl. Therm. Eng. 73 (1): 205–221. https://doi.org/10.1016/j.applthermaleng.2014.07.050.
Babaelahi, M., and H. Sayyaadi. 2014. “Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines.” Energy 69 (May): 873–890. https://doi.org/10.1016/j.energy.2014.03.084.
Chambadal, P. 1957. Les centrales nucléaires. Paris: Armand Colin.
Chang, H.-M., D.-J. Park, and S. Jeong. 2000. “Effect of gap flow on shuttle heat transfer.” Cryogenics 40 (3): 159–166. https://doi.org/10.1016/S0011-2275(00)00020-5.
Cheng, C.-H., and Y.-J. Yu. 2010. “Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism.” Renewable Energy 35 (11): 2590–2601. https://doi.org/10.1016/j.renene.2010.04.002.
Costea, M., S. Petrescu, and C. Harman. 1999. “The effect of irreversibilities on solar Stirling engine cycle performance.” Energy Convers. Manage. 40 (15): 1723–1731. https://doi.org/10.1016/S0196-8904(99)00065-5.
Costea, S.-C., M. Tutar, I. Barreno, J.-A. Esnaola, H. Barrutia, D. García, M.-A. González, and J.-I. Prieto. 2014. “Experimental and numerical flow investigation of Stirling engine regenerator.” Energy 72 (Aug): 800–812. https://doi.org/10.1016/j.energy.2014.06.002.
Curzon, F., and B. Ahlborn. 1975. “Efficiency of a Carnot engine at maximum power output.” Am. J. Phys. 43 (1): 22–24. https://doi.org/10.1119/1.10023.
Della Torre, A., A. Guzzetti, G. Montenegro, T. Cerri, A. Onorati, and F. Aloui. 2014. “CFD modelling of a beta-type Stirling machine.” In Proc., 5th European Conf. on Computational Mechanics (ECCM V), Barcelona 2014. Barcelona, Spain: Centre Internacional de Mètodes Numèrics a l'Enginyeria.
Durmayaz, A., O. S. Sogut, B. Sahin, and H. Yavuz. 2004. “Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics.” Prog. Energy Combust. Sci. 30 (2): 175–217. https://doi.org/10.1016/j.pecs.2003.10.003.
Dyson, R. W., S. M. Geng, R. C. Tew, and M. Adelino. 2008. “Towards fully three-dimensional virtual Stirling convertors for multi-physics analysis and optimization.” Eng. Appl. Comput. Fluid Mech. 2 (1): 95–118. https://doi.org/10.1080/19942060.2008.11015214.
Feidt, M. 1996. Thermodynamique et optimisation énergétique des systèmes et procédés. Paris: Technique et Documentation Lavoisier.
Finkelstein, T. 1995. “Gas particle trajectories in Stirling machines.” In Proc., 7th Int. Conf. on Stirling Cycle Machines, ICSC, 71–76. Tokyo: Japan Society of Mechanical Engineers.
Gao, Y., A. Qiu, and R. Li. 2019. “Design and development of a heater head for free-piston Stirling engine.” In Proc., AIAA Propulsion and Energy 2019 Forum, 3975. Reston, VA: American Institute of Aeronautics and Astronautics.
Grosu, L. 2014. Exergie et systèmes énergétiques: Transition vers l’EXERGETIQUE. Saarbrücken, Germany: Presses Académiques Francophones.
Grosu, L., C. Dobre, and S. Petrescu. 2015. “Study of a Stirling engine used for domestic micro-cogeneration. Thermodynamic analysis and experiment.” Int. J. Energy Res. 39 (9): 1280–1294. https://doi.org/10.1002/er.3345.
Grosu, L., P. Rochelle, and N. Martaj. 2012. “An engineer-oriented optimisation of Stirling engine cycle with finite-size finite-speed of revolution thermodynamics.” Int. J. Exergy 11 (2): 191–204. https://doi.org/10.1504/IJEX.2012.049743.
Heywood, J. 1988. Internal combustion engine fundamentals. New York: McGraw-Hill Education.
Homutescu, V. M., G. Dumitrascu, and B. Horbaniuc. 2008. “Evaluation of the work lost due to leaks through cylinder-displacer gap.” COFRET Nantes 2 (1): 70–74.
Hosseinzade, H., and H. Sayyaadi. 2015. “CAFS: The combined adiabatic–finite speed thermal model for simulation and optimization of Stirling engines.” Energy Convers. Manage. 91 (Feb): 32–53. https://doi.org/10.1016/j.enconman.2014.11.049.
Hosseinzade, H., H. Sayyaadi, and M. Babaelahi. 2015. “A new closed-form analytical thermal model for simulating Stirling engines based on polytropic-finite speed thermodynamics.” Energy Convers. Manage. 90 (Jan): 395–408. https://doi.org/10.1016/j.enconman.2014.11.043.
Kolin, I. 1991. “Stirling engine with alternative sources.” In Proc., 5th Int. Stirling Engine Conf., Inter-University Centre, Croatia, Dubrovnik, 421–426. Dubrovnik, Croatia: Univ. of Dubrovnik.
Kolin, I. 1999. “A new step in development of hybrid Stirling electric vehicle.” In Proc., 9th Int. Stirling Engine Conf., 109–115. Republic of South Africa, Johannesburg: Univ. of Rome La Sapienza.
Kolin, I., S. Koscak-Kolin, and M. Golub. 2000. “Geothermal electricity production by means of the low temperature difference Stirling engine.” In Proc., World Geothermal Congress, 3199–3203. Tokyo: Japanese Organizing Committee for WGC 2000.
Kongtragool, B., and S. Wongwises. 2005. “Optimum absorber temperature of a once-reflecting full conical concentrator of a low temperature differential Stirling engine.” Renewable Energy 30 (11): 1671–1687. https://doi.org/10.1016/j.renene.2005.01.003.
Li, R., and L. Grosu. 2017. “Parameter effect analysis for a Stirling cryocooler.” Int. J. Refrig. 80 (Aug): 92–105. https://doi.org/10.1016/j.ijrefrig.2017.05.006.
Li, R., L. Grosu, and W. Li. 2017. “New polytropic model to predict the performance of beta and gamma type Stirling engine.” Energy 128 (Jun): 62–76. https://doi.org/10.1016/j.energy.2017.04.001.
Li, R., L. Grosu, and D. Queiros-Condé. 2016a. “Losses effect on the performance of a gamma type Stirling engine.” Energy Convers. Manage. 114 (Apr): 28–37. https://doi.org/10.1016/j.enconman.2016.02.007.
Li, R., L. Grosu, and D. Queiros-Condé. 2016b. “Multi-objective optimization of Stirling engine using finite physical dimensions thermodynamics (FPDT) method.” Energy Convers. Manage. 124 (Sep): 517–527. https://doi.org/10.1016/j.enconman.2016.07.047.
Li, R., S. Qiu, and Y. Gao. 2019. “Development of an advanced free piston Stirling engine of space power system.” In Proc., AIAA Propulsion and Energy 2019 Forum, 4064. Reston, VA: American Institute of Aeronautics and Astronautics.
Mabrouk, M. T., A. Kheiri, and M. Feidt. 2014. “Displacer gap losses in beta and gamma Stirling engines.” Energy 72 (Aug): 135–144. https://doi.org/10.1016/j.energy.2014.05.017.
Martaj, N. 2008. Modélisation énergétique et exergétique, simulation et optimisation des moteurs Stirling à faible différence de températures: confrontations avec l’expérience. Nanterre, France: Université Paris Ouest Nanterre La défense.
Martaj, N., L. Grosu, and P. Rochelle. 2005. “Exergetical analysis and design optimisation of the Stirling engine.” Int. J. Exergy 3 (1): 45–67. https://doi.org/10.1504/IJEX.2006.008325.
Martaj, N., L. Grosu, and P. Rochelle. 2007. “Thermodynamic study of a low temperature difference Stirling engine at steady state operation.” Int. J. Thermodyn. 10 (4): 165.
Mei, D., K. Hielscher, and R. Baar. 2014. “Study on combustion process and emissions of a single-cylinder diesel engine fueled with DMC/diesel blend.” J. Energy Eng. 140 (1): 04013004. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000168.
Minassians, A. D. 2007. Stirling engines for low-temperature solar-thermal-electric power generation. Berkeley, CA: Univ. of California, Berkeley.
Novikov, I. 1958. “The efficiency of atomic power stations (a review).” J. Nucl. Energy 7 (1–2): 125–128. https://doi.org/10.1016/0891-3919(58)90244-4.
Organ, A. J. 1992. Thermodynamics and gas dynamics of the Stirling cycle machine. Cambridge, UK: Cambridge University Press.
Paul, C. J., and A. Engeda. 2015. “Modeling a complete Stirling engine.” Energy 80 (Feb): 85–97. https://doi.org/10.1016/j.energy.2014.11.045.
Petrescu, S., M. Costea, C. Harman, and T. Florea. 2002. “Application of the direct method to irreversible Stirling cycles with finite speed.” Int. J. Energy Res. 26 (7): 589–609. https://doi.org/10.1002/er.806.
Petrescu, S., M. Feidt, V. Enache, M. Costea, C. Stanciu, and N. Boriaru. 2015. “Unification perspective of finite physical dimensions thermodynamics and finite speed thermodynamics.” Int. J. Energy Environ. Eng. 6 (3): 245–254. https://doi.org/10.1007/s40095-015-0172-2.
Radcenco, V. T. 2001. “O teorie termodinamică a interacţiunilor fizice. Bucureşti, Romania: Editura Academiei Române.
Rakopoulos, D. C. 2020. “Effects of exhaust gas recirculation under fueling rate or air/fuel ratio-controlled strategies on diesel engine performance and emissions by two-zone combustion modeling.” J. Energy Eng. 147 (1): 04020079. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000729.
Rochelle, P., and J. Andrzjewski. 1974. “Optimisation des cycles à rendement maximal.” Revue de l’Institut Français du Pétrole 29 (2): 731–749.
Rochelle, P., and L. Grosu. 2011. “Analytical solutions and optimization of the exo-irreversible Schmidt cycle with imperfect regeneration for the 3 classical types of Stirling engine.” Oil Gas Sci. Technol.–Rev. IFP Energies nouvelles 66 (5): 747–758. https://doi.org/10.2516/ogst/2011127.
Rogdakis, E., G. Antonakos, and I. P. Koronaki. 2016. “Influence of a regenerator on Stirling engine performance.” J. Energy Eng. 142 (2): E4016002. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000338.
Sauer, J., and H.-D. Kuehl. 2017. “Numerical model for Stirling cycle machines including a differential simulation of the appendix gap.” Appl. Therm. Eng. 111 (Jan): 819–833. https://doi.org/10.1016/j.applthermaleng.2016.09.176.
Schmidt, G. 1871. “Theorie der Lehmannschen calorischen maschine.” Z. Ver. Dtsch. Ing. 15 (1): 1–12.
Senft, J. R. 1996. An introduction to low temperature differential Stirling engines. River Falls, WI: Moriya Press.
Senft, J. R. 1998. “Theoretical limits on the performance of Stirling engines.” Int. J. Energy Res. 22 (11): 991–1000. https://doi.org/10.1002/(SICI)1099-114X(199809)22:11%3C991::AID-ER427%3E3.0.CO;2-U.
Senft, J. R. 2002. “Optimum Stirling engine geometry.” Int. J. Energy Res. 26 (12): 1087–1101. https://doi.org/10.1002/er.838.
Senft, J. R. 2007. Mechanical efficiency of heat engines. Cambridge, UK: Cambridge University Press.
Tanaka, M., I. Yamashita, and F. Chisaka. 1990. “Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow.” JSME Int. J. Ser. 2, Fluids Eng. Heat Transfer Power Combus. Thermophys. Prop. 33 (2): 283–289. https://doi.org/10.1299/jsmeb1988.33.2_283.
Timoumi, Y., I. Tlili, and S. Ben Nasrallah. 2008. “Design and performance optimization of GPU-3 Stirling engines.” Energy 33 (7): 1100–1114. https://doi.org/10.1016/j.energy.2008.02.005.
Tlili, I., Y. Timoumi, and S. B. Nasrallah. 2008. “Analysis and design consideration of mean temperature differential Stirling engine for solar application.” Renewable Energy 33 (8): 1911–1921. https://doi.org/10.1016/j.renene.2007.09.024.
Toghyani, S., A. Kasaeian, S. H. Hashemabadi, and M. Salimi. 2014. “Multi-objective optimization of GPU3 Stirling engine using third order analysis.” Energy Convers. Manage. 87 (Nov): 521–529. https://doi.org/10.1016/j.enconman.2014.06.066.
Walker, G., and J. Senft. 1985. “Liquid piston Stirling engines.” In Free piston Stirling engines, 235–261. New York: Springer.
Walker, G., M. Weiss, R. Fauvel, and G. Reader. 1990. “Adventures with MarWeiss: A summary of experience with Stirling simulation.” In Proc., 25th Intersociety: Energy Conversion Engineering Conf. IECEC-90, 342–345. New York: IEEE.
Wang, Y., C. Jiang, F. Wen, Y. Xue, F. Chen, L. Zhang, and X. Yuan. 2020. “Energy trading and management strategies in a regional integrated energy system with multiple energy carriers and renewable-energy generation.” J. Energy Eng. 147 (1): 04020076. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000726.
West, C. 1982. “Performance characteristics of wet and dry Fluidynes (Stirling cycle engines).” In Proc., IECEC’82, 1761–1765. New York: IEEE.
West, C. 1991. “Stirling engines with controlled evaporation of a two-phase two-component working fluid.” In Proc., Intersociety Energy Conversion Engineering Conf. Oak Ridge, TN: Oak Ridge National Laboratory.
West, C., and R. Pandey. 1981. “Laboratory prototype Fluidyne water pump.” In Vol. 2. of Proc., Intersociety Energy Conversion Engineering Conf.;(United States). No. CONF-810812-AERE. New York: IEEE.
West, C. D. 1986. Principles and applications of Stirling engines. New York: Van Nostrand Reinhold Company.
Yanaga, K., Y. Gao, R. Li, and S. Qiu. 2019. “Stirling engine robust foil regenerator efficiency.” In Vol. 59438 of Proc., ASME Int. Mechanical Engineering Congress and Exposition, V006T06A039. New York: American Society of Mechanical Engineers.
Yanaga, K., R. Li, and S. Qiu. 2020. “Robust foil regenerator flow loss and heat transfer tests under oscillating flow condition.” Appl. Therm. Eng. 178 (Sep): 115525. https://doi.org/10.1016/j.applthermaleng.2020.115525.
Yanaga, K., and S. Qiu. 2019. “Experimental investigation of Stirling engine robust foil regenerator.” In Vol. 3974 of Proc., AIAA Propulsion and Energy 2019 Forum. Reston, VA: American Institute of Aeronautics and Astronautics.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 147Issue 5October 2021

History

Received: Sep 16, 2020
Accepted: Mar 10, 2021
Published online: Jun 28, 2021
Published in print: Oct 1, 2021
Discussion open until: Nov 28, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral fellow, Dept. of Mechanical Engineering and Applied Mechanics, Univ. of Pennsylvania, 220 S. 33rd St., Philadelphia, PA 19104 (corresponding author). ORCID: https://orcid.org/0000-0002-1895-9936. Email: [email protected]
Lavinia Grosu [email protected]
Professor, Laboratoire Energétique, Mécanique et Electromagnétisme, Université Paris Nanterre, 50, rue de Sèvres, 92 410 Ville D’Avray, France. Email: [email protected]
Nadia Martaj
Assistant professor, EPF-Ecole d’Ingénieurs, 2 rue F. Sastre, 10430 Rosières-près-Troyes, France.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share