Technical Papers
Jun 19, 2020

Energy, Exergy, and Parametric Analysis of Simple and Recuperative Organic Rankine Cycles Using a Gas Turbine–Based Combined Cycle

Publication: Journal of Energy Engineering
Volume 146, Issue 5

Abstract

In this study, simple and recuperative organic Rankine cycles (ORCs) were designed as the bottoming cycle to a simple gas turbine. After the design, the performance of the ORC engines was analyzed for varying turbine inlet temperature and pressure. During the study, eight different working fluids were selected for the design of the ORCs to identify the best-performing working candidate, namely, benzene, cyclohexane, ethanol, methanol, R21, R152a, toluene, and trans-2-butane. For all turbine inlet pressure values, the maximum performance was obtained from methanol for simple ORC (sORC) and from trans-2-butane for recuperative ORC (rORC). The maximum net power production, thermal efficiency, and exergy efficiency of the sORC were obtained with methanol at 45 bar 350°C, achieving 1967 kW, 24.5%, and 48.9%, respectively. For rORC, the maximum net power production, thermal efficiency, and exergy efficiency were obtained with trans-2-butane at 40 bar 240°C as 2,523 kW, 31.1%, and 62.4%, respectively. The highest net power production, thermal efficiency, and exergy efficiency of the gas turbine (GT)-ORC combined cycle are found at 40 bar and 240°C for rORC, reaching 8,723 kW, 47.63%, and 67.33%, respectively. This means that almost 1,605  kg-CO2/h reduction in CO2 emission is possible with the use of rORC as a bottoming cycle in the GT. When the total heat input from the fuel in the burner of the GT is considered, it is observed that the power production of the GT-rORC combined cycle can be increased up to 40.7%. In order to identify optimum performance under real operating conditions, the designed system can be used by ORC engine designers, manufacturers, and in facilities where simple gas turbines are available.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during the study appear in the published article.

References

Aghahosseini, S., and I. Dincer. 2013. “Comparative performance analysis of low-temperature organic Rankine cycle (ORC) using pure and zeotropic working fluids.” Appl. Therm. Eng. 54 (1): 35–42. https://doi.org/10.1016/j.applthermaleng.2013.01.028.
Agromayor, R., and L. O. Nord. 2017. “Fluid selection and thermodynamic optimization of organic Rankine cycles for waste heat recovery applications.” Energy Procedia 129 (Sep): 527–534. https://doi.org/10.1016/j.egypro.2017.09.180.
Arat, H. T., M. K. Baltacioglu, B. Tanç, M. G. Sürer, and I. Dincer. 2020. “A perspective on hydrogen energy research, development and innovation activities in Turkey.” Int. J. Energy Res. 44 (2): 588–593. https://doi.org/10.1002/er.5031.
Astolfi, M., L. Xodo, M. C. Romano, and E. Macchi. 2011. “Technical and economical analysis of a solar–geothermal hybrid plant based on an organic Rankine cycle.” Geothermics 40 (1): 58–68. https://doi.org/10.1016/j.geothermics.2010.09.009.
Badr, O., M. Hussein, S. D. Probert, and P. W. O’Callaghan. 1984. “Thermal stabilities of mixtures of trichlorofluoroethane and lubricating fluids contained in copper sealed tubes.” Appl. Energy 16 (1): 41–52. https://doi.org/10.1016/0306-2619(84)90025-4.
Badr, O., P. W. O’Callaghan, and S. D. Probert. 1985. “Thermodynamic and thermophysical properties of organic working fluids for Rankine-cycle engines.” Appl. Energy 19 (1): 1–40. https://doi.org/10.1016/0306-2619(85)90037-6.
Badr, O., P. W. O’Callaghan, and S. D. Probert. 1990. “Rankine-cycle systems for harnessing power from low-grade energy sources.” Appl. Energy 36 (4): 263–292. https://doi.org/10.1016/0306-2619(90)90002-U.
Bao, J., and L. Zhao. 2013. “A review of working fluid and expander selections for organic Rankine cycle.” Renewable Sustainable Energy Rev. 24 (Aug): 325–342. https://doi.org/10.1016/j.rser.2013.03.040.
Barbieri, E. S., M. Morini, and M. Pinelli. 2011. “Development of a model for the simulation of organic Rankine cycles based on group contribution techniques.” In Proc., ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, 1011–1019. New York: ASME.
Bejan, A., G. Tsatsaronis, and M. Moran. 1996. Thermal design and optimization. New York: Wiley.
Bilgiç, H. H., H. Yağlı, A. Koç, and A. Yapıcı. 2016. “Deneysel bir organik Rankine çevriminde yapay sinir ağlari (YSA) yardimiyla güç tahmini.” Selcuk Univ. J. Eng. Sci. Technol. 4 (1): 7–17.
Bo, Z., K. Zhang, P. Sun, X. Lv, and Y. Weng. 2019. “Performance analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle and ejector refrigeration cycle.” Front. Energy 13 (1): 54–63. https://doi.org/10.1007/s11708-018-0606-7.
Braimakis, K., A. Thimo, and S. Karellas. 2017. “Technoeconomic analysis and comparison of a solar-based biomass ORC-VCC system and a PV heat pump for domestic trigeneration.” J. Energy Eng. 143 (2): 04016048. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000397.
Cao, Y., and Y. Dai. 2017. “Preliminary system design and off-design analysis for a gas turbine and ORC combined cycle.” J. Energy Eng. 143 (5): 04017040. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000468.
Carcasci, C., B. Facchini, and S. Harvey. 1998a. “Design issues and performance of a chemically recuperated aeroderivative gas turbine.” Proc. Inst. Mech. Eng. Part A J. Power Energy 212 (5): 315–329. https://doi.org/10.1243/0957650981536899.
Carcasci, C., B. Facchini, and S. Harvey. 1998b. “Modular approach to analysis of chemically recuperated gas turbine cycles.” Energy Convers. Manage. 39 (16–18): 1693–1703. https://doi.org/10.1016/S0196-8904(98)00060-0.
Carcasci, C., R. Ferraro, and E. Miliotti. 2014. “Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines.” Energy 65 (Feb): 91–100. https://doi.org/10.1016/j.energy.2013.11.080.
Cengel, Y. A., and M. A. Boles. 2008. Thermodynamics: An engineering approach. 6th ed. New York: McGraw-Hill.
Chacartegui, R., D. Sánchez, J. M. Muñoz, and T. Sánchez. 2009. “Alternative ORC bottoming cycles for combined cycle power plants.” Appl. Energy 86 (10): 2162–2170. https://doi.org/10.1016/j.apenergy.2009.02.016.
Chatzopoulou, M. A., S. Lecompte, M. De Paepe, and C. N. Markides. 2019a. “Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications.” Appl. Energy 253 (Nov): 113442. https://doi.org/10.1016/j.apenergy.2019.113442.
Chatzopoulou, M. A., M. Simpson, P. Sapin, and C. N. Markides. 2019b. “Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications.” Appl. Energy 238 (Mar): 1211–1236. https://doi.org/10.1016/j.apenergy.2018.12.086.
Chen, X., Y. Su, S. Omer, and S. Riffat. 2016. “Theoretical investigations on combined power and ejector cooling system powered by low-grade energy source.” Int. J. Low-Carbon Technol. 11 (4): 466–475. https://doi.org/10.1093/ijlct/ctv015.
Dai, Y., J. Wang, and L. Gao. 2009. “Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery.” Energy Convers. Manage. 50 (3): 576–582. https://doi.org/10.1016/j.enconman.2008.10.018.
De Escalona, J. M., D. Sánchez, R. Chacartegui, and T. Sánchez. 2012. “Part-load analysis of gas turbine & ORC combined cycles.” Appl. Thermal Eng. 36 (Apr): 63–72. https://doi.org/10.1016/j.applthermaleng.2011.11.068.
De Pascale, A., C. Ferrari, F. Melino, M. Morini, and M. Pinelli. 2012. “Integration between a thermophotovoltaic generator and an organic Rankine cycle.” Appl. Energy 97 (Sep): 695–703. https://doi.org/10.1016/j.apenergy.2011.12.043.
Dincer, I., and M. A. Rosen. 2013. Exergy: Energy, environment and sustainable development. 2nd ed. Amsterdam, Netherlands: Elsevier.
Firdaus, E., K. Saaed, D. Bryant, M. Jones, S. Biggs, and B. Bahawodin. 2012. “Assessment and modelling of the waste heat availability from gas turbine based CHP systems for ORC systems.” Icrepq. com 1 (10): 1–7.
Ge, Z., J. Li, Y. Duan, Z. Yang, and Z. Xie. 2019. “Thermodynamic performance analyses and optimization of dual-loop organic Rankine cycles for internal combustion engine waste heat recovery.” Appl. Sci. 9 (4): 680. https://doi.org/10.3390/app9040680.
Giakoumis, E. G., A. M. Dimaratos, C. D. Rakopoulos, and D. C. Rakopoulos. 2017. “Combustion instability during starting of turbocharged diesel engine including biofuel effects.” J. Energy Eng. 143 (2): 04016047. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000402.
Görgülü, A., H. Yağli, Y. Koç, A. Koç, and E. Baltacioğlu. 2019a. “Activated carbon adsorption behaviour of toluene at various temperatures and relative humidity.” Environ. Prot. Eng. 45 (1): 111–126.https://doi.org/10.37190/epe190109.
Görgülü, A., H. Yağlı, Y. Koç, A. Koç, N. A. Öztürk, and Ö. Köse. 2019b. “Experimental study of butane adsorption on coconut based activated carbon for different gas concentrations, temperatures and relative humidities.” Environ. Technol. 1–10. https://doi.org/10.1080/09593330.2019.1692913.
Gu, W., Y. Weng, Y. Wang, and B. Zheng. 2009. “Theoretical and experimental investigation of an organic Rankine cycle for a waste heat recovery system.” Proc. Inst. Mech. Eng. Part A J. Power Energy 223 (5): 523–533. https://doi.org/10.1243/09576509JPE725.
Guvenc, M. A., H. Kapusuz, and S. Mistikoglu. 2020. “Experimental study on accelerometer-based ladle slag detection in continuous casting process.” Int. J. Adv. Manuf. Technol. 106 (7–8): 2983–2993. https://doi.org/10.1007/s00170-019-04830-8.
He, W. F., D. Han, W. P. Zhu, L. Huang, and X. K. Zhang. 2018. “Parametric analysis of a power and water combined system based on a top organic Rankine cycle.” J. Energy Eng. 144 (4): 04018037. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000554.
Heberle, F., and D. Brüggemann. 2010. “Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation.” Appl. Therm. Eng. 30 (11–12): 1326–1332. https://doi.org/10.1016/j.applthermaleng.2010.02.012.
Hung, T. C. 2001. “Waste heat recovery of organic Rankine cycle using dry fluids.” Energy Convers. Manage. 42 (5): 539–553. https://doi.org/10.1016/S0196-8904(00)00081-9.
Hung, T. C., T. Y. Shai, and S. K. Wang. 1997. “A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat.” Energy 22 (7): 661–667. https://doi.org/10.1016/S0360-5442(96)00165-X.
Khaliq, A., and S. C. Kaushik. 2004. “Thermodynamic performance evaluation of combustion gas turbine cogeneration system with reheat.” Appl. Therm. Eng. 24 (13): 1785–1795. https://doi.org/10.1016/j.applthermaleng.2003.12.013.
Khaljani, M., R. K. Saray, and K. Bahlouli. 2015. “Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle.” Energy Conver. Manage. 97 (Jun): 154–165. https://doi.org/10.1016/j.enconman.2015.02.067.
Koç, A., H. Yağlı, Y. Koç, and İ. Uğurlu. 2018. “Dünyada ve Türkiye’de Enerji Görünümünün Genel Değerlendirilmesi.” Eng. Mach. Mag. 59 (692): 86–114.
Koç, Y., and H. Yağlı. 2020. “Isı-güç kombine sistemlerinde kullanılan kalina çevriminin enerji ve ekserji analizi.” J. Polytech. 23 (1): 181–188.
Koç, Y., H. Yağlı, and A. Koç. 2019. “Exergy analysis and performance improvement of a subcritical/supercritical organic Rankine cycle (ORC) for exhaust gas waste heat recovery in a biogas fuelled combined heat and power (CHP) engine through the use of regeneration.” Energies 12 (4): 575. https://doi.org/10.3390/en12040575.
Kölsch, B., and J. Radulovic. 2015. “Utilisation of diesel engine waste heat by organic Rankine cycle.” Appl. Therm. Eng. 78 (Mar): 437–448. https://doi.org/10.1016/j.applthermaleng.2015.01.004.
Kosmadakis, G., D. Manolakos, and G. Papadakis. 2011. “Simulation and economic analysis of a CPV/thermal system coupled with an organic Rankine cycle for increased power generation.” Sol. Energy 85 (2): 308–324. https://doi.org/10.1016/j.solener.2010.11.019.
Kotas, T. J. 2013. The exergy method of thermal plant analysis. Amsterdam, Netherlands: Elsevier.
Kuyumcu, M. E., H. Tutumlu, and R. Yumrutaş. 2016. “Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank.” Energy Convers. Manage. 121 (Aug): 349–357. https://doi.org/10.1016/j.enconman.2016.05.049.
Kyritsis, D. C., C. D. Rakopoulos, and D. C. Rakopoulos. 2019. “Engine and power plant combustion technologies for sustainability.” J. Energy Eng. 145 (5): 02019001. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000614.
Lee, M. J., D. L. Tien, and C. T. Shao. 1993. “Thermophysical capability of ozone-safe working fluids for an organic Rankine cycle system.” Heat Recovery Syst. CHP 13 (5): 409–418. https://doi.org/10.1016/0890-4332(93)90042-T.
Li, C., and H. Wang. 2016. “Power cycles for waste heat recovery from medium to high temperature flue gas sources—From a view of thermodynamic optimization.” Appl. Energy 180 (Oct): 707–721. https://doi.org/10.1016/j.apenergy.2016.08.007.
Li, M., J. Wang, S. Li, and Y. Dai. 2015. “Experimental study and numerical simulation of a regenerative ORC utilizing low-grade heat source.” J. Energy Eng. 141 (3): 04014011. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000165.
Li, S., and Y. Dai. 2015. “Thermo-economic analysis of waste heat recovery ORC using zeotropic mixtures.” J. Energy Eng. 141 (4): 04014050. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000245.
Li, X., T. Liu, and L. Chen. 2018. “Thermodynamic performance analysis of an improved two-stage organic Rankine cycle.” Energies 11 (11): 2864. https://doi.org/10.3390/en11112864.
Liu, B. T., K. H. Chien, and C. C. Wang. 2004. “Effect of working fluids on organic Rankine cycle for waste heat recovery.” Energy 29 (8): 1207–1217. https://doi.org/10.1016/j.energy.2004.01.004.
Long, R., Y. J. Bao, X. M. Huang, and W. Liu. 2014. “Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery.” Energy 73(Aug): 475–483. https://doi.org/10.1016/j.energy.2014.06.040.
Loni, R., A. B. Kasaeian, O. Mahian, and A. Z. Sahin. 2016. “Thermodynamic analysis of an organic Rankine cycle using a tubular solar cavity receiver.” Energy Convers. Manage. 127 (Nov): 494–503. https://doi.org/10.1016/j.enconman.2016.09.007.
Mohammadi, A., M. Ashouri, M. H. Ahmadi, M. Bidi, M. Sadeghzadeh, and T. Ming. 2018. “Thermoeconomic analysis and multiobjective optimization of a combined gas turbine, steam, and organic Rankine cycle.” Energy Sci. Eng. 6 (5): 506–522. https://doi.org/10.1002/ese3.227.
Mohammadkhani, F., N. Shokati, S. M. S. Mahmoudi, M. Yari, and M. A. Rosen. 2014. “Exergoeconomic assessment and parametric study of a gas turbine-modular helium reactor combined with two organic Rankine cycles.” Energy 65 (Feb): 533–543. https://doi.org/10.1016/j.energy.2013.11.002.
Mohapatra, A. K. 2018. “Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling.” Appl. Therm. Eng. 136 (May): 431–443. https://doi.org/10.1016/j.applthermaleng.2018.03.023.
Mu, Y., Y. Zhang, N. Deng, and J. Nie. 2015. “Experimental study of a low-temperature power generation system in an organic Rankine cycle.” J. Energy Eng. 141 (3): 04014017. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000181.
Nami, H., S. M. S. Mahmoudi, and A. Nemati. 2017. “Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2).” Appl. Therm. Eng. 110 (Jan): 1315–1330. https://doi.org/10.1016/j.applthermaleng.2016.08.197.
NIST. 2019. Reference fluid thermodynamic and transport properties (REFPROP). Version 9.0. Gaithersburg, MD: NIST.
Oyedepo, S. O., and A. B. Fakeye. 2020. “Electric power conversion of exhaust waste heat recovery from gas turbine power plant using organic Rankine cycle.” Int. J. Energy Water Resour. 4: 139–150.
Pantaleo, A. M., S. M. Camporeale, A. Miliozzi, V. Russo, G. S. Mugnozza, C. N. Markides, and N. Shah. 2017. “Thermo-economic assessment of an externally fired hybrid CSP/biomass gas turbine and organic Rankine combined cycle.” Energy Procedia 105 (May): 174–181. https://doi.org/10.1016/j.egypro.2017.03.298.
Pei, G., J. Li, and J. Ji. 2010. “Analysis of low temperature solar thermal electric generation using regenerative organic Rankine cycle.” Appl. Therm. Eng. 30 (8–9): 998–1004. https://doi.org/10.1016/j.applthermaleng.2010.01.011.
Quoilin, S., S. Declaye, B. F. Tchanche, and V. Lemort. 2011a. “Thermo-economic optimization of waste heat recovery organic Rankine cycles.” Appl. Therm. Eng. 31 (14–15): 2885–2893. https://doi.org/10.1016/j.applthermaleng.2011.05.014.
Quoilin, S., M. Orosz, H. Hemond, and V. Lemort. 2011b. “Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation.” Sol. Energy 85 (5): 955–966. https://doi.org/10.1016/j.solener.2011.02.010.
Rakopoulos, C. D., D. C. Kyritsis, P. Grammelis, and D. C. Rakopoulos. 2017. “Recent innovations in advanced thermal energy systems towards better utilization of energy resources and cleaner environment: Issues and challenges.” J. Energy Eng. 143 (6): 02017001. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000500.
Ramos, A., M. A. Chatzopoulou, J. Freeman, and C. N. Markides. 2018. “Optimisation of a high-efficiency solar-driven organic Rankine cycle for applications in the built environment.” Appl. Energy 228 (Oct): 755–765. https://doi.org/10.1016/j.apenergy.2018.06.059.
Reddy, B. V., and C. Butcher. 2009. “Second law analysis of a natural gas-fired gas turbine cogeneration system.” Int. J. Energy Res. 33 (8): 728–736. https://doi.org/10.1002/er.1510.
Ren, J., Y. Cao, Y. Long, X. Qiang, and Y. Dai. 2019. “Thermodynamic comparison of gas turbine and ORC combined cycle with pure and mixture working fluids.” J. Energy Eng. 145 (1): 05018002. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000580.
Roumpedakis, T. C., T. Christou, E. Monokrousou, K. Braimakis, and S. Karellas. 2019. “Integrated ORC-adsorption cycle: A first and second law analysis of potential configurations.” Energy 179 (Jul): 46–58. https://doi.org/10.1016/j.energy.2019.04.069.
Roy, J. P., M. K. Mishra, and A. Misra. 2010. “Parametric optimization and performance analysis of a waste heat recovery system using organic Rankine cycle.” Energy 35 (12): 5049–5062. https://doi.org/10.1016/j.energy.2010.08.013.
Saha, B. K., and B. Chakraborty. 2017. “Utilization of low-grade waste heat-to-energy technologies and policy in Indian industrial sector: A review.” Clean Technol. Environ. Policy 19 (2): 327–347. https://doi.org/10.1007/s10098-016-1248-2.
Saleh, B., G. Koglbauer, M. Wendland, and J. Fischer. 2007. “Working fluids for low-temperature organic Rankine cycles.” Energy 32 (7): 1210–1221. https://doi.org/10.1016/j.energy.2006.07.001.
Sánchez, D., J. M. De Escalona, B. Monje, R. Chacartegui, and T. Sánchez. 2011. “Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and organic Rankine cycle.” J. Power Sour. 196 (9): 4355–4363. https://doi.org/10.1016/j.jpowsour.2010.07.060.
Schuster, A., S. Karellas, E. Kakaras, and H. Spliethoff. 2009. “Energetic and economic investigation of organic Rankine cycle applications.” Appl. Therm. Eng. 29 (8–9): 1809–1817. https://doi.org/10.1016/j.applthermaleng.2008.08.016.
Simpson, M. C., M. A. Chatzopoulou, O. A. Oyewunmi, N. Le Brun, P. Sapin, and C. N. Markides. 2019a. “Technoeconomic analysis of internal combustion engine—Organic Rankine cycle systems for combined heat and power in energy-intensive buildings.” Appl. Energy 253 (Nov): 113462. https://doi.org/10.1016/j.apenergy.2019.113462.
Simpson, M. C., M. A. Chatzopoulou, O. A. Oyewunmi, and C. N. Markides. 2019b. “Technoeconomic analysis of internal combustion engine—Organic Rankine cycle cogeneration systems in energy-intensive buildings.” Energy Procedia 158 (Feb): 2354–2359. https://doi.org/10.1016/j.egypro.2019.01.283.
Stoppato, A. 2012. “Energetic and economic investigation of the operation management of an organic Rankine cycle cogeneration plant.” Energy 41 (1): 3–9. https://doi.org/10.1016/j.energy.2011.09.033.
Talya, S. S., A. Chattopadhyay, and J. N. Rajadas. 2002. “Multidisciplinary design optimization procedure for improved design of a cooled gas turbine blade.” Eng. Optim. 34 (2): 175–194. https://doi.org/10.1080/03052150210917.
Tanç, B., H. T. Arat, E. Baltacıoğlu, and K. Aydın. 2019. “Overview of the next quarter century vision of hydrogen fuel cell electric vehicles.” Int. J. Hydrogen Energy 44 (20): 10120–10128. https://doi.org/10.1016/j.ijhydene.2018.10.112.
Tchanche, B. F., G. Papadakis, G. Lambrinos, and A. Frangoudakis. 2009. “Fluid selection for a low-temperature solar organic Rankine cycle.” Appl. Therm. Eng. 29 (11–12): 2468–2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025.
Trigg, M. A., G. R. Tubby, and A. G. Sheard. 1999. “Automatic genetic optimization approach to two-dimensional blade profile design for steam turbines.” J. Turbomach. 121 (1): 11–17. https://doi.org/10.1115/1.2841220.
Tutumlu, H., R. Yumrutaş, and M. Yildirim. 2018. “Investigating thermal performance of an ice rink cooling system with an underground thermal storage tank.” Energy Explor. Exploit. 36 (2): 314–334. https://doi.org/10.1177/0144598717723644.
Tzivanidis, C., and E. Bellos. 2019. “Energetic, exergetic, and financial investigation of biomass-driven trigeneration system.” J. Energy Eng. 145 (6): 04019020. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000622.
Vanslambrouck, B., I. Vankeirsbilck, M. van den Broek, S. Gusev, and M. De Paepe. 2012. “Efficiency comparison between the steam cycle and the organic Rankine cycle for small scale power generation.” In Proc., Renewable Energy World Conf. and Expo North America. Tarragona, Spain: Geothermal Energy Association.
Yagli, H., A. Koc, C. Karakus, and Y. Koc. 2016a. “Comparison of toluene and cyclohexane as a working fluid of an organic Rankine cycle used for reheat furnace waste heat recovery.” Int. J. Exergy 19 (3): 420–438. https://doi.org/10.1504/IJEX.2016.075677.
Yağlı, H., C. Karakuş, Y. Koç, M. Çevik, İ. Uğurlu, and A. Koç. 2019. “Designing and exergetic analysis of a solar power tower system for Iskenderun region.” Int. J. Exergy 28 (1): 96–112. https://doi.org/10.1504/IJEX.2019.097273.
Yağlı, H., Y. Koç, A. Koç, A. Görgülü, and A. Tandiroğlu. 2016b. “Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat.” Energy 111 (Sep): 923–932. https://doi.org/10.1016/j.energy.2016.05.119.
Yari, M., and S. M. S. Mahmoudi. 2010. “Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles.” Appl. Therm. Eng. 30 (4): 366–375. https://doi.org/10.1016/j.applthermaleng.2009.09.017.
Zhang, T., T. Zhu, W. An, X. Song, L. Liu, and H. Liu. 2016. “Unsteady analysis of a bottoming organic Rankine cycle for exhaust heat recovery from an internal combustion engine using Monte Carlo simulation.” Energy Convers. Manage. 124 (Sep): 357–368. https://doi.org/10.1016/j.enconman.2016.07.039.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 146Issue 5October 2020

History

Received: Feb 6, 2020
Accepted: Apr 23, 2020
Published online: Jun 19, 2020
Published in print: Oct 1, 2020
Discussion open until: Nov 19, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Faculty of Engineering and Natural Sciences, Dept. of Mechanical Engineering Hatay, Iskenderun Technical Univ., Hatay, Iskenderun 31200, Turkey. ORCID: https://orcid.org/0000-0002-2219-645X. Email: [email protected]
Assistant Professor, Faculty of Engineering and Natural Sciences, Dept. of Mechanical Engineering, Iskenderun Technical Univ., Iskenderun Technical Univ., Hatay, Iskenderun 31200, Turkey (corresponding author). ORCID: https://orcid.org/0000-0002-9777-0698. Email: [email protected]
Işıl Kalay [email protected]
Institute of Energy, Iskenderun Technical Univ., Hatay, Iskenderun 31200, Turkey. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share