Technical Papers
Jun 18, 2020

Model Predictive Control of a Piezoelectric Vortex-Induced Vibrations Energy Harvester

Publication: Journal of Energy Engineering
Volume 146, Issue 5

Abstract

In this paper, an optimal control method is proposed for a piezoelectric vortex-induced vibrations (VIV) energy harvester. The harvester comprises a blunt cylinder attached to the tip of a flexible beam. The beam is a composite cantilever that is partially covered by piezoelectric plates. A nonlinear model is derived for the VIV of the harvester by using the Euler–Lagrange principle with the unsteady aerodynamic force due to vortex shedding. To achieve the maximum energy production, an optimal controller is designed using the model predictive control (MPC) method. The MPC design problem turned out to be a linear quadratic optimization problem that is solved by efficient numerical methods. The closed-loop response of the MPC scheme is studied through extensive numerical simulation for several working conditions. The results showed that, compared with the conventional methods, the MPC scheme significantly increases the output electrical power of the VIV harvester.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The MATLAB codes of the reduced-order dynamic model, MPC controller design, and closed-loop simulations developed during this study are available from the corresponding author by request.

References

Abdelkefi, A., and M. Ghommem. 2013. “Piezoelectric energy harvesting from morphing wing motions for micro air vehicles.” Theor. Appl. Mech. Lett. 3 (5): 052004. https://doi.org/10.1063/2.1305204.
Abdelkefi, A., M. R. Hajj, and A. H. Nayfeh. 2012a. “Power harvesting from transverse galloping of square cylinder.” Nonlinear Dyn. 70 (2): 1355–1363. https://doi.org/10.1007/s11071-012-0538-4.
Abdelkefi, A., M. R. Hajj, and A. H. Nayfeh. 2013. “Piezoelectric energy harvesting from transverse galloping of bluff bodies.” Smart Mater. Struct. 22 (1): 015014. https://doi.org/10.1088/0964-1726/22/1/015014.
Abdelkefi, A., A. H. Nayfeh, and M. R. Hajj. 2012b. “Design of piezoaeroelastic energy harvesters.” Nonlinear Dyn. 68 (4): 519–530. https://doi.org/10.1007/s11071-011-0233-x.
Abdelkefi, A., A. H. Nayfeh, and M. R. Hajj. 2012c. “Modeling and analysis of piezoaeroelastic energy harvesters.” Nonlinear Dyn. 67 (2): 925–939. https://doi.org/10.1007/s11071-011-0035-1.
Akaydin, H. D., N. Elvin, and Y. Andreopoulos. 2012. “The performance of a self-excited fluidic energy harvester.” Smart Mater. Struct. 21 (2): 025007. https://doi.org/10.1088/0964-1726/21/2/025007.
Amin Karami, M., and D. J. Inman. 2012. “Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters.” Appl. Phys. Lett. 100 (4): 042901. https://doi.org/10.1063/1.3679102.
Azadi Yazdi, E. 2018. “Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine.” Smart Mater. Struct. 27 (7): 075005. https://doi.org/10.1088/1361-665X/aac0b6.
Azadi Yazdi, E. 2019. “Optimal control of a broadband vortex-induced vibration energy harvester.” J. Intell. Mater. Syst. Struct. 31 (1): 137–151. https://doi.org/10.1177/1045389X19888711.
Bianchi, F. D., R. J. Mantz, and H. De Battista. 2007. “Wind turbine control systems: Advances in Industrial.” In Control. London: Springer.
Bishop, R. E. D., and A. Y. Hassan. 1964. “The lift and drag forces on a circular cylinder in a flowing fluid.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 277 (1368): 32–50. https://doi.org/10.1098/rspa.1964.0004.
Chizfahm, A., E. Azadi Yazdi, and M. Eghtesad. 2018. “Dynamic modeling of vortex induced vibration wind turbines.” Renewable Energy 121 (Jun): 632–643. https://doi.org/10.1016/j.renene.2018.01.038.
Cordonnier, J., F. Gorintin, A. De Cagny, A. H. Clément, and A. Babarit. 2015. “SEAREV: Case study of the development of a wave energy converter.” Renewable Energy 80 (Aug): 40–52. https://doi.org/10.1016/j.renene.2015.01.061.
Dai, H. L., A. Abdelkefi, and L. Wang. 2014a. “Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations.” Nonlinear Dyn. 77 (3): 967–981. https://doi.org/10.1007/s11071-014-1355-8.
Dai, H. L., A. Abdelkefi, and L. Wang. 2014b. “Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations.” J. Intell. Mater. Syst. Struct. 25 (14): 1861–1874. https://doi.org/10.1177/1045389X14538329.
Dang, D. Q., S. Wu, Y. Wang, and W. Cai. 2010. “Model predictive control for maximum power capture of variable speed wind turbines.” In Proc., 2010 9th Int. Power and Energy Conf., IPEC 2010, 274–279. New York: IEEE.
Facchinetti, M. L., E. de Langre, and F. Biolley. 2004. “Coupling of structure and wake oscillators in vortex-induced vibrations.” J. Fluids Struct. 19 (2): 123–140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004.
Faedo, N., S. Olaya, and J. V. Ringwood. 2017. “Optimal control, MPC and MPC-like algorithms for wave energy systems: An overview.” IFAC J. Syst. Control 1 (Sep): 37–56. https://doi.org/10.1016/j.ifacsc.2017.07.001.
Ferreau, H. J., H. G. Bock, and M. Diehl. 2008. “An online active set strategy to overcome the limitations of explicit MPC.” Int. J. Robust Nonlinear Control 18 (8): 816–830. https://doi.org/10.1002/rnc.1251.
Harne, R. L., and K. W. Wang. 2013. “A review of the recent research on vibration energy harvesting via bistable systems.” Smart Mater. Struct. 22 (2): 023001. https://doi.org/10.1088/0964-1726/22/2/023001.
Hasheminejad, S. M., A. H. Rabiee, and M. Jarrahi. 2017. “Semi-active vortex induced vibration control of an elastic elliptical cylinder with energy regeneration capability.” Int. J. Struct. Stab. Dyn. 17 (9): 1750107. https://doi.org/10.1142/S0219455417501073.
Hasheminejad, S. M., A. H. Rabiee, M. Jarrahi, and A. H. D. Markazi. 2014. “Active vortex-induced vibration control of a circular cylinder at low Reynolds numbers using an adaptive fuzzy sliding mode controller.” J. Fluids Struct. 50 (Oct): 49–65. https://doi.org/10.1016/j.jfluidstructs.2014.06.011.
Homer, J. R., and R. Nagamune. 2018. “Physics-based 3-D control-oriented modeling of floating wind turbines.” IEEE Trans. Control Syst. Technol. 26 (1): 14–26. https://doi.org/10.1109/TCST.2017.2654420.
Hong, Y., R. Waters, C. Boström, M. Eriksson, J. Engström, and M. Leijon. 2014. “Review on electrical control strategies for wave energy converting systems.” Renewable Sustainable Energy Rev. 31 (Mar): 329–342. https://doi.org/10.1016/j.rser.2013.11.053.
Jiao, P., W. Borchani, H. Hasni, and N. Lajnef. 2017. “Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams.” Smart Mater. Struct. 26 (8): 085045. https://doi.org/10.1088/1361-665X/aa746e.
Kazantzis, N., K. T. Chong, J. H. Park, and A. G. Parlos. 2003. “Control-relevant discretization of nonlinear systems with time-delay using taylor-lie series.” In Proc., American Control Conf. (ACC), 149–154. New York: IEEE. https://doi.org/10.1109/ACC.2003.1238929.
Kramer, M. M., L. Marquis, P. Frigaard, and P. Allé. 2011. “Performance evaluation of the wavestar prototype.” In Proc., 9th European Wave and Tidal Energy Conf. Southampton, UK: EWTEC.
Kumar, A., V. V. Bhanu Prasad, K. C. James Raju, and A. R. James. 2015. “Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics.” J. Mater. Sci. - Mater. Electron. 26 (6): 3757–3765. https://doi.org/10.1007/s10854-015-2899-1.
Lefeuvre, E., A. Badel, C. Richard, and D. Guyomar. 2005. “Piezoelectric energy harvesting device optimization by synchronous electric charge extraction.” J. Intell. Mater. Syst. Struct. 16 (10): 865–876. https://doi.org/10.1177/1045389X05056859.
Lei, M., L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan. 2009. “A review on the forecasting of wind speed and generated power.” Renewable Sustainable Energy Rev. 13 (4): 915–920. https://doi.org/10.1016/j.rser.2008.02.002.
Ma, F., C. Fu, J. Yang, and Q. Yang. 2020. “Control strategy for adaptive active energy harvesting in sediment microbial fuel cells.” J. Energy Eng. 146 (1): 04019034 https://doi.org/10.1061/(ASCE)EY.1943-7897.0000640.
Maolikul, S., S. Kiatgamolchai, and T. Chavarnakul. 2017. “Low-power energy harvesting of thermoelectric battery charger with step-up DC-DC converter: Applicable case study for personal electronic gadgets.” J. Energy Eng. 143 (4): 05017001 https://doi.org/10.1061/(ASCE)EY.1943-7897.0000432.
Mehmood, A., A. Abdelkefi, M. R. Hajj, A. H. Nayfeh, I. Akhtar, and A. O. Nuhait. 2013. “Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder.” J. Sound Vib. 332 (19): 4656–4667. https://doi.org/10.1016/j.jsv.2013.03.033.
Meliga, P., J. M. Chomaz, and F. Gallaire. 2011. “Extracting energy from a flow: An asymptotic approach using vortex-induced vibrations and feedback control.” J. Fluids Struct. 27 (5–6): 861–874. https://doi.org/10.1016/j.jfluidstructs.2011.03.005.
Mirzaei, M., M. Soltani, N. K. Poulsen, and H. H. Niemann. 2013. “An MPC approach to individual pitch control of wind turbines using uncertain LIDAR measurements.” In Proc., 2013 European Control Conf., ECC 2013, 490–495. New York: IEEE.
Muralt, P. 2000. “Ferroelectric thin films for micro-sensors and actuators: A review.” J. Micromech. Microeng. 10 (2): 136–146. https://doi.org/10.1088/0960-1317/10/2/307.
Nguyen, B. P., Y. Ho, Z. Wu, and C. Chui. 2012. “Implementation of model predictive control with modified minimal model on low-power RISC microcontrollers.” In Proc., 3rd Symp. on Information and Communication Technology, 165–171. New York: ACM.
Nocedal, J., and S. J. Wright. 2006. Numerical optimization. New York: Springer.
Ogata, K. 1995. Discrete-time control systems. Upper Saddle River, NJ: Prentice-Hall International.
Park, G., T. Rosing, M. D. Todd, C. R. Farrar, and W. Hodgkiss. 2008. “Energy harvesting for structural health monitoring sensor networks.” J. Infrastruct. Syst. 14 (1): 64–79. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(64).
Pascucci, C. A., A. Bemporad, S. Bennani, and M. Rotunno. 2014. “Embedded MPC for space applications.” In Proc., 2nd IAA Conf. on Dynamics and Control of Space Systems. Paris: IAA.
Ramadass, Y. K., and A. P. Chandrakasan. 2010. “An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor.” IEEE J. Solid-State Circuits 45 (1): 189–204. https://doi.org/10.1109/JSSC.2009.2034442.
Rao, C. V., S. J. Wright, and J. B. Rawlings. 1998. “Application of interior-point methods to model predictive control.” J. Optim. Theory Appl. 99 (3): 723–757. https://doi.org/10.1023/A:1021711402723.
Richalet, J., A. Rault, J. L. Testud, and J. Papon. 1978. “Model predictive heuristic control: Applications to industrial processes.” Automatica 14 (5): 413–428. https://doi.org/10.1016/0005-1098(78)90001-8.
Roundy, S., and P. K. Wright. 2004. “A piezoelectric vibration based generator for wireless electronics.” Smart Mater. Struct. 13 (5): 1131–1142. https://doi.org/10.1088/0964-1726/13/5/018.
Shen, W., and S. Zhu. 2015. “Harvesting energy via electromagnetic damper: Application to bridge stay cables.” J. Intell. Mater. Syst. Struct. 26 (1): 3–19. https://doi.org/10.1177/1045389X13519003.
Skop, R. A., and S. Balasubramanian. 1997. “A new twist on an old model for vortex-excited vibrations.” J. Fluids Struct. 11 (4): 395–412. https://doi.org/10.1006/jfls.1997.0085.
Soman, S. S., H. Zareipour, O. Malik, and P. Mandal. 2010. “A review of wind power and wind speed forecasting methods with different time horizons.” In Proc., North American Power Symp. 2010, 1–8. New York: IEEE.
Song, D., J. Yang, X. Fan, Y. Liu, A. Liu, G. Chen, and Y. H. Joo. 2018. “Maximum power extraction for wind turbines through a novel yaw control solution using predicted wind directions.” Energy Convers. Manage. 157 (Feb): 587–599. https://doi.org/10.1016/j.enconman.2017.12.019.
Torres, E. O., and G. A. Rincón-Mora. 2008. “Energy-harvesting system-in-package microsystem.” J. Energy Eng. 134 (4): 121–129. https://doi.org/10.1061/(ASCE)0733-9402(2008)134:4(121).
Zhang, L. B., A. Abdelkefi, H. L. Dai, R. Naseer, and L. Wang. 2017. “Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations.” J. Sound Vib. 408 (Nov): 210–219. https://doi.org/10.1016/j.jsv.2017.07.029.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 146Issue 5October 2020

History

Received: Jul 2, 2019
Accepted: Mar 31, 2020
Published online: Jun 18, 2020
Published in print: Oct 1, 2020
Discussion open until: Nov 18, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, School of Mechanical Engineering, Shiraz Univ., Mollasadra St., Shiraz 71936-16548, Iran (corresponding author). ORCID: https://orcid.org/0000-0001-6615-8327. Email: [email protected]
S. M. J. Zolanvari [email protected]
Master Student, School of Mechanical Engineering, Shiraz Univ., Mollasadra St., Shiraz 71936-16548, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share