Abstract

The interactions between particles in dense particulate systems are organized in force networks, mesoscale features that influence the macroscopic response to applied stresses. The detailed structure of these networks is, however, difficult to extract from experiments that cannot resolve individual contact forces. In this study, we showed that certain persistent homology (PH) measures extracted from data accessible to experiment are strongly correlated with the same features extracted from the full contact force network. We performed simulations known to accurately model experiments on an intruder being pushed through a two-dimensional (2D) granular layer and compared PH properties of full contact force networks and networks constructed using only the sum of the normal forces on each grain. We found that the main features were highly correlated, suggesting that data commonly available in experiments are sufficient for quantifying the structure of force networks in evolving granular systems.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All the data used in this study are available from the authors upon request.

Acknowledgments

This study was supported by US Army Research Office Grant No. W911NF1810184. Authors L. A. P. and C. M. C. acknowledge support from Universidad Tecnológica Nacional through Grant Nos. PID-MAUTNLP0004415 and PID-MAIFIBA0004434TC and from Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) (CONICET) through Grant Nos. RES-1225-17 and PUE 2018 229 20180100010 CO.

References

Ardanza-Trevijano, S., I. Zuriguel, R. Arévalo, and D. Maza. 2014. “Topological analysis of tapped granular media using persistent homology.” Phys. Rev. E 89 (5): 052212. https://doi.org/10.1103/PhysRevE.89.052212.
Arévalo, R., L. A. Pugnaloni, I. Zuriguel, and D. Maza. 2013. “Contact network topology in tapped granular media.” Phys. Rev. E 87 (2): 022203. https://doi.org/10.1103/PhysRevE.87.022203.
Arévalo, R., I. Zuriguel, and D. Maza. 2010. “Topology of the force network in jamming transition of an isotropically compressed granular packing.” Phys. Rev. E 81 (4): 041302. https://doi.org/10.1103/PhysRevE.81.041302.
Azéma, E., and F. Radja. 2012. “Force chains and contact network topology in sheared packings of elongated particles.” Phys. Rev. E 85 (3): 031303. https://doi.org/10.1103/PhysRevE.85.031303.
Bassett, D. S., E. T. Owens, K. E. Daniels, and M. A. Porter. 2012. “Influence of network topology on sound propagation in granular materials.” Phys. Rev. E 86 (4): 041306. https://doi.org/10.1103/PhysRevE.86.041306.
Behringer, R. P., and B. Chakraborty. 2018. “The physics of jamming for granular materials: a review.” Rep. Progress Phys. 82 (1): 012601. https://doi.org/10.1088/1361-6633/aadc3c.
Bo, L., R. Mari, C. Song, and H. A. Makse. 2014. “Cavity method for force transmission in jammed disordered packings of hard particles.” Soft Matter 10 (37): 7379–7392. https://doi.org/10.1039/C4SM00667D.
Carlevaro, C., and L. Pugnaloni. 2011. “Steady state of tapped granular polygons.” J. Stat. Mech. 2011 (01): P01007. https://doi.org/10.1088/1742-5468/2011/01/P01007.
Carlevaro, C. M., R. Kozlowski, L. A. Pugnaloni, H. Zheng, J. E. S. Socolar, and L. Kondic. 2020. “Intruder in a two-dimensional granular system: Effects of dynamic and static basal friction on stick-slip and clogging dynamics.” Phys. Rev. E 101 (1): 012909. https://doi.org/10.1103/PhysRevE.101.012909.
Catto, E. 2005. “Iterative dynamics with temporal coherence.” Accessed March 15, 2017. https://box2d.org/downloads/.
Cheng, C., A. Zadeh, and L. Kondic. 2021. “Correlating the force network evolution and dynamics in slider experiments.” Preprint, submitted January 13, 2021. https://arxiv:2101:07218.
Daniels, K. E., J. E. Kollmer, and J. G. Puckett. 2017. “Photoelastic force measurements in granular materials.” Rev. Sci. Instrum. 88 (5): 051808. https://doi.org/10.1063/1.4983049.
Dijksman, J. A., L. Kovalcinova, J. Ren, R. P. Behringer, M. Kramár, K. Mischaikow, and L. Kondic. 2018. “Characterizing granular networks using topological metrics.” Phys. Rev. E 97 (4): 042903. https://doi.org/10.1103/PhysRevE.97.042903.
Gameiro, M., A. Singh, L. Kondic, K. Mischaikow, and J. F. Morris. 2020. “Interaction network analysis in shear thickening suspensions.” Phys. Rev. Fluids 5 (3): 034307. https://doi.org/10.1103/PhysRevFluids.5.034307.
Giusti, C., L. Papadopoulos, E. T. Owens, K. E. Daniels, and D. S. Bassett. 2016. “Topological and geometric measurements of force-chain structure.” Phys. Rev. E 94 (3): 032909. https://doi.org/10.1103/PhysRevE.94.032909.
GUDHI. 2014. “Topological data analysis and geometric inference in higher dimension.” Accessed December 15, 2020. https://gudhi.inria.fr.
Howell, D., R. P. Behringer, and C. Veje. 1999. “Stress fluctuations in a 2D granular Couette experiment: A continuous transition.” Phys. Rev. Lett. 82 (26): 5241. https://doi.org/10.1103/PhysRevLett.82.5241.
Kawamoto, R., E. Andò, G. Viggiani, and J. E. Andrade. 2018. “All you need is shape: predicting shear banding in sand with LS-DEM.” J. Mech. Phys. Solids 111 (Feb): 375–392. https://doi.org/10.1016/j.jmps.2017.10.003.
Kondic, L., A. Goullet, C. O’Hern, M. Kramar, K. Mischaikow, and R. Behringer. 2012. “Topology of force networks in compressed granular media.” Europhys. Lett. 97 (5): 54001. https://doi.org/10.1209/0295-5075/97/54001.
Kondic, L., M. Kramár, L. A. Pugnaloni, C. M. Carlevaro, and K. Mischaikow. 2016. “Structure of force networks in tapped particulate systems of disks and pentagons. II. Persistence analysis.” Phys. Rev. E 93 (6): 062903. https://doi.org/10.1103/PhysRevE.93.062903.
Kozlowski, R., C. M. Carlevaro, K. E. Daniels, L. Kondic, L. A. Pugnaloni, J. E. S. Socolar, H. Zheng, and R. P. Behringer. 2019. “Dynamics of a grain-scale intruder in a two-dimensional granular medium with and without basal friction.” Phys. Rev. E 100 (3): 032905. https://doi.org/10.1103/PhysRevE.100.032905.
Kramár, M., A. Goullet, L. Kondic, and K. Mischaikow. 2013. “Persistence of force networks in compressed granular media.” Phys. Rev. E 87 (4): 042207. https://doi.org/10.1103/PhysRevE.87.042207.
Kramár, M., A. Goullet, L. Kondic, and K. Mischaikow. 2014a. “Evolution of force networks in dense particulate media.” Phys. Rev. E 90 (5): 052203. https://doi.org/10.1103/PhysRevE.90.052203.
Kramár, M., A. Goullet, L. Kondic, and K. Mischaikow. 2014b. “Quantifying force networks in particulate systems.” Phys. D 283 (Aug): 37–55. https://doi.org/10.1016/j.physd.2014.05.009.
Kramár, M., R. Levanger, J. Tithof, B. Suri, M. Xu, M. Paul, M. F. Schatz, and K. Mischaikow. 2016. “Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology.” Phys. D 334 (Nov): 82–98. https://doi.org/10.1016/j.physd.2016.02.003.
Li, L., E. Marteau, and J. E. Andrade. 2019. “Capturing the inter-particle force distribution in granular material using LS-DEM.” Granular Matter 21 (43): 1–16.
Liu, J., A. Wautier, S. Bonelli, F. Nicot, and F. Darve. 2020. “Macroscopic softening in granular materials from a mesoscale perspective.” Int. J. Solids Struct. 193 (Jun): 222–238. https://doi.org/10.1016/j.ijsolstr.2020.02.022.
Mileyko, Y., S. Mukherjee, and J. Harer. 2011. “Probability measures on the space of persistence diagrams.” Inverse Prob. 27 (12): 124007. https://doi.org/10.1088/0266-5611/27/12/124007.
Nicot, F., H. Xiong, A. Wautier, J. Lerbet, and F. Darve. 2017. “Force chain collapse as grain column buckling in granular materials.” Granular Matter 19 (2): 18. https://doi.org/10.1007/s10035-017-0702-0.
Peters, J., M. Muthuswamy, J. Wibowo, and A. Tordesillas. 2005. “Characterization of force chains in granular material.” Phys. Rev. E 72 (4): 041307. https://doi.org/10.1103/PhysRevE.72.041307.
Pöschel, T., and T. Schwager. 2005. Computational granular dynamics: Models and algorithms. New York. Springer.
Pugnaloni, L., C. Carlevaro, M. Kramár, K. Mischaikow, and L. Kondic. 2016. “Structure of force networks in tapped particulate systems of disks and pentagons. I. Clusters and loops.” Phys. Rev. E 93 (6): 062902. https://doi.org/10.1103/PhysRevE.93.062902.
Pytlos, M., M. Gilbert, and C. C. Smith. 2015. “Modelling granular soil behaviour using a physics engine.” Geotech. Lett. 5 (4): 243–249. https://doi.org/10.1680/jgele.15.00067.
Radjai, F., M. Jean, J. J. Moreau, and S. Roux. 1996. “Force distribution in dense two-dimensional granular systems.” Phys. Rev. Lett. 77 (2): 274–277. https://doi.org/10.1103/PhysRevLett.77.274.
Sarkar, S., D. Bi, J. Zhang, R. P. Behringer, and B. Chakraborty. 2013. “Origin of rigidity in dry granular solids.” Phys. Rev. Lett. 111 (6): 068301. https://doi.org/10.1103/PhysRevLett.111.068301.
Shah, S., C. Cheng, P. Jalali, and L. Kondic. 2020. “Failure of confined granular media due to pullout of an intruder: from force networks to a system wide response.” Soft Matter 16 (33): 7685–7695. https://doi.org/10.1039/D0SM00911C.
Snoeijer, J. H., T. J. H. Vlugt, M. van Hecke, and W. van Saarloos. 2004. “Force network ensemble: A new approach to static granular matter.” Phys. Rev. Lett. 92 (5): 054302. https://doi.org/10.1103/PhysRevLett.92.054302.
Takahashi, T., A. H. Clark, T. Majmudar, and L. Kondic. 2018. “Granular response to impact: Topology of the force networks.” Phys. Rev. E 97 (1): 012906. https://doi.org/10.1103/PhysRevE.97.012906.
Tighe, B. P., J. H. Snoeijer, T. J. H. Vlugt, and M. van Hecke. 2010. “The force network ensemble for granular packings.” Soft Matter 6 (13): 2908–2917. https://doi.org/10.1039/b926592a.
Tordesillas, A., S. T. Tobin, M. Cil, K. Alshibli, and R. P. Behringer. 2015. “Network flow model of force transmission in unbonded and bonded granular media.” Phys. Rev. E 91 (6): 062204. https://doi.org/10.1103/PhysRevE.91.062204.
Tordesillas, A., D. M. Walker, G. Froyland, J. Zhang, and R. Behringer. 2012. “Transition dynamics of frictional granular clusters.” Phys. Rev. E 86 (1): 011306. https://doi.org/10.1103/PhysRevE.86.011306.
Tordesillas, A., D. M. Walker, and Q. Lin. 2010. “Force cycles and force chains.” Phys. Rev. E 81 (1): 011302. https://doi.org/10.1103/PhysRevE.81.011302.
Walker, D., and A. Tordesillas. 2012. “Taxonomy of granular rheology from grain property networks.” Phys. Rev. E 85 (1): 011304. https://doi.org/10.1103/PhysRevE.85.011304.
Zadeh, A. A., et al. 2019. “Enlightening force chains: A review of photoelasticimetry in granular matter.” Granular Matter 21 (4): 83. https://doi.org/10.1007/s10035-019-0942-2.
Zhao, Y., H. Zheng, D. Wang, M. Wang, and R. P. Behringer. 2019. “Particle scale force sensor based on intensity gradient method in granular photoelastic experiments.” New J. Phys. 21 (2): 023009. https://doi.org/10.1088/1367-2630/ab05e7.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 147Issue 11November 2021

History

Received: Feb 23, 2021
Accepted: Jun 26, 2021
Published online: Sep 11, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 11, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Rituparna Basak
Dept. of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102.
Instituto de Física de Líquidos y Sistemas Biológicos, Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), and Departamento Ing. Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, La Plata 1900, Argentina. ORCID: https://orcid.org/0000-0003-3528-7614
Ryan Kozlowski
Dept. of Physics, Duke Univ., Durham, NC 27708.
Chao Cheng
Dept. of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102.
Luis A. Pugnaloni
Departamento de Física, FCEyN, Universidad Nacional de La Pampa, Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Santa Rosa, La Pampa 6300, Argentina.
Miroslav Kramár
Dept. of Mathematics, Univ. of Oklahoma, Norman, OK 73019.
Hu Zheng
Dept. of Geotechnical Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, China.
Dept. of Physics, Duke Univ., Durham, NC 27708. ORCID: https://orcid.org/0000-0003-0532-7099
Dept. of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102 (corresponding author). ORCID: https://orcid.org/0000-0001-6966-9851. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share