Abstract

A novel Hencky bar-grid model (eHBM) was developed to address plane stress elasticity problems. This model comprises rigid bars arranged in a grid which are joined by frictionless hinges, frictionless pulleys, elastic primary and secondary axial springs, and torsional springs. Based on the energy approach, the in-plane displacements at the joints were determined and the in-plane stress resultants were obtained from the stress resultant–displacement relations. This paper calibrated the elastic spring stiffnesses for the eHBM for the first time by matching them with the finite-difference governing equation for elasticity problems. Some rectangular plane elasticity problems were solved by using the newly developed eHBM. The solutions obtained from the eHBM converged to the exact solutions for the continuum plane body with respect to decreasing the eHBM segment size. It was shown that the eHBM readily can handle any boundary conditions, and furnishes accurate solutions for plane elasticity problems with any complex geometry, such as a rectangular plane body with cutouts.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Andrianov, I. V., J. Awrejcewicz, and D. Weichert. 2010. “Improved continuous models for discrete media.” Math. Probl. Eng. 2010: 1–35. https://doi.org/10.1155/2010/986242.
Askes, H., and L. J. Sluys. 2002. “Explicit and implicit gradient series in damage mechanics.” Eur. J. Mech. A. Solids 21 (3): 379–390. https://doi.org/10.1016/S0997-7538(02)01214-7.
Born, M., and K. Huang. 1955. “Dynamical theory of crystal lattices.” Am. J. Phys 23 (7): 474. https://doi.org/10.1119/1.1934059.
Born, M., and T. V. Karman. 1912. “Über schwingungen in raumgittern.” Phys. Zeit. 8: 297–309.
Bower, A. F. 2009. Applied mechanics of solids. London: Taylor and Francis.
Capecchi, D., G. Ruta, and P. Trovalusci. 2010. “From classical to Voigt’s molecular models in elasticity.” Arch. Hist. Exact Sci. 64 (5): 525–559. https://doi.org/10.1007/s00407-010-0065-y.
Cauchy, A. L. 1828. “Sur l’équilibre et le mouvement d’un système de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle.” Exercises de mathematiques 3: 188–212.
Chang, C. S., H. Askes, and L. J. Sluys. 2002. “Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture.” Eng. Fract. Mech. 69 (17): 1907–1924. https://doi.org/10.1016/S0013-7944(02)00068-1.
Cui, X., Z. Xue, Y. Pei, and D. Fang. 2011. “Preliminary study on ductile fracture of imperfect lattice materials.” Int. J. Solids Struct. 48 (25–26): 3453–3461. https://doi.org/10.1016/j.ijsolstr.2011.08.013.
del Piero, G., and L. Truskinovsky. 1998. “A one-dimensional model for localized and distributed failure.” Le Journal de Physique IV 8 (8): 95–102.
Fleck, N. A., and J. W. Hutchinson. 1993. “A phenomenological theory for strain gradient effects in plasticity.” J. Mech. Phys. Solids 41 (12): 1825–1857. https://doi.org/10.1016/0022-5096(93)90072-N.
Foce, F. 1995. “The theory of elasticity between molecular and continuum approach in the XIX century.” In Between mechanics and architecture, edited by P. Radelet-de Grave and E. Benvenuto. Basel, Switzerland: Birkjauser-Verlag. https://doi.org/10.1007/978-3-0348-9072-4_17.
Gazis, D. C., R. Herman, and R. F. Wallis. 1960. “Surface elastic waves in cubic crystals.” Phys. Rev. 119 (2): 533–544. https://doi.org/10.1103/PhysRev.119.533.
Goldenveizer, A. L., J. D. Kaplunov, and E. V. Nolde. 1993. “On Timoshenko-Reissner type theories of plates and shells.” Int. J. Solids Struct. 30 (5): 675–694. https://doi.org/10.1016/0020-7683(93)90029-7.
Hencky, H. 1921. “Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette.” Der Eisenbau 11: 437–452.
Hrennikoff, A. 1941. “Solution of problems of elasticity by framework method.” ASME J. Appl. Mech. 8: A169–A175.
Hrennikoff, A. 1949. “Framework method and its technique for solving plane stress problems.” In Vol. 9 of Proc., Int. Association Bridge Structure Engineering, 217–248. Zürich, Switzerland: ETH Zürich. https://doi.org/10.5169/seals-9702.
Lagrange, J. L. 1759. “Recherches sur la nature et la propagation du son.” Miscellanea Taurinensia (Melanges de Turin) 1 (1–10): 1–112.
Lagrange, J.-L. 2009. Mécanique Analytique. Cambridge, UK: Cambridge University Press.
Leckie, F. A., and G. M. Lindberg. 1963. “The effect of lumped parameters on beam frequencies.” Aeronaut. Quart. 14: 224–240. https://doi.org/10.1017/S0001925900002791.
Maugin, G. A. 1999. Nonlinear waves in elastic crystals. Oxford, UK: Oxford University Press.
McHenry, D. 1943. “A lattice analogy for the solution of stress problems.” J. Inst. Civ. Eng. 21 (2): 59–82. https://doi.org/10.1680/ijoti.1943.13967.
Mindlin, R. D. 1970. “Lattice theory of shear modes of vibration and torsional equilibrium of simple-cubic crystal plates and bars.” Int. J. Solids Struct. 6 (6): 725–738. https://doi.org/10.1016/0020-7683(70)90013-2.
O’Brien, G. S. 2008. “Discrete visco-elastic lattice methods for seismic wave propagation.” Geophys. Res. Lett. 35 (2): L02302.
Ostoja-Starzewski, M. 2002. “Lattice models in micromechanics.” Appl. Mech. Rev. 55 (1): 35–60. https://doi.org/10.1115/1.1432990.
Poisson, S. D. 1829. “Mémoire sur l’équilibre et le mouvement des corps élastiques.” Mémoire de l’Académie des Sciences de l’Institut de France 8: 357–570.
Riedel, W. 1927. “Beiträge zur Lösung des ebenen Problems eines elastischen Körpers mittels der Ayrischen Spannungsfunktion.” Z. futr angewandte Mathematik und Mechanik 7 (3): 169–188. https://doi.org/10.1002/zamm.19270070302.
Rogers, R. C., and L. Truskinovsky. 1997. “Discretization and hysteresis.” Physica B 233 (4): 370–375. https://doi.org/10.1016/S0921-4526(97)00323-2.
Salvadori, M. G. 1951. “Numerical computation of buckling loads by finite differences.” Trans. Am. Soc. Civ. Eng. 116 (1): 590–624.
Silverman, I. K. 1951. “Numerical computation of buckling loads by finite differences.” Trans. Am. Soc. Civ. Eng. 116 (1): 625–626.
Suiker, A. S. J., A. V. Metrikine, and R. de Borst. 2001. “Dynamic behaviour of a layer of discrete particles, part 1: Analysis of body waves and eigenmodes.” J. Sound Vib. 240 (1): 1–18. https://doi.org/10.1006/jsvi.2000.3202.
Timoshenko, S., and J. N. Goodier. 1969. Theory of elasticity. London: McGraw-Hill.
Voigt, V. 1910. Lehrbuch der Krystallphysik. Leipzig, Germany: B.G. Teubner.
Wang, C. M., H. Zhang, N. Challamel, and W. H. Pan. 2020. Hencky bar-chain/net for structural analysis. Hackensack, NJ: World Scientific Publishing Europe.
Wang, C. M., Y. P. Zhang, and D. M. Pedroso. 2017. “Hencky bar-net model for plate buckling.” Eng. Struct. 150 (Nov): 947–954. https://doi.org/10.1016/j.engstruct.2017.07.080.
Wang, G., A. Al-Ostaz, A. H.-D. Cheng, and P. R. Mantena. 2009. “Hybrid lattice particle modeling: Theoretical considerations for a 2D elastic spring network for dynamic fracture simulations.” Comput. Mater. Sci. 44 (4): 1126–1134. https://doi.org/10.1016/j.commatsci.2008.07.032.
Wieghardt, K. 1906. “Über einen Grenzübergang der Elastizitätslehre und seine Anwendung auf die Statik hochgradig statisch unbestimmter Fachwerke.” Verhandtlungen des Vereinz z. Beförderung des Gewerbefleisses Abhandlungen 85: 139–176.
Wu, C.-W. 1986. A discrete element method for linear and nonlinear stress and bifurcation problems of elastic structures. New Mexico State Univ.
Yavari, A., M. Ortiz, and K. Bhattacharya. 2006. “A theory of anharmonic lattice statics for analysis of defective crystals.” J. Elast. 86 (1): 41–83. https://doi.org/10.1007/s10659-006-9079-8.
Zhang, H., N. Challamel, C. M. Wang, and Y. P. Zhang. 2019a. “Buckling of multiply connected bar-chain and its associated continualized nonlocal model.” Int. J. Mech. Sci. 150 (Sep): 168–175. https://doi.org/10.1016/j.ijmecsci.2018.10.015.
Zhang, H., N. Challamel, C. M. Wang, and Y. P. Zhang. 2019b. “Exact and nonlocal solutions for vibration of multiply connected bar-chain system with direct and indirect neighbouring interactions.” J. Sound Vib. 443 (Mar): 63–73. https://doi.org/10.1016/j.jsv.2018.11.037.
Zhang, H., C. M. Wang, N. Challamel, and Y. P. Zhang. 2018a. “Uncovering the finite difference model equivalent to Hencky bar-net model for axisymmetric bending of circular and annular plates.” Appl. Math. Modell. 61 (Sep): 300–315. https://doi.org/10.1016/j.apm.2018.04.019.
Zhang, H., Y. P. Zhang, and C. M. Wang. 2018b. “Hencky bar-net model for vibration of rectangular plates with mixed boundary conditions and point supports.” Int. J. Struct. Stab. Dyn. 18 (03): 1850046. https://doi.org/10.1142/S0219455418500463.
Zhang, Y., D. M. Pedroso, and L. Li. 2016. “FDM and FEM solutions to linear dynamics of porous media: Stabilised, monolithic and fractional schemes.” Int. J. Numer. Methods Eng. 108 (6): 614–645. https://doi.org/10.1002/nme.5231.
Zhang, Y., D. M. Pedroso, L. Li, and W. Ehlers. 2017. “FDM solutions to linear dynamics of porous media: Efficiency, stability, and parallel solution strategy.” Int. J. Numer. Methods Eng. 112 (11): 1539–1563. https://doi.org/10.1002/nme.5568.
Zhang, Y. P., N. Challamel, C. M. Wang, and H. Zhang. 2019c. “Comparison of nano-plate bending behaviour by Eringen nonlocal plate, Hencky bar-net and continualised nonlocal plate models.” Acta Mech. 230 (3): 885–907. https://doi.org/10.1007/s00707-018-2326-9.
Zhang, Y. P., C. M. Wang, and D. M. Pedroso. 2018c. “Hencky bar-net model for buckling analysis of plates under non-uniform stress distribution.” Thin-Walled Struct. 122 (Jan): 344–358. https://doi.org/10.1016/j.tws.2017.10.039.
Zhang, Y. P., C. M. Wang, D. M. Pedroso, and H. Zhang. 2018d. “Extension of Hencky bar-net model for vibration analysis of rectangular plates with rectangular cutouts.” J. Sound Vib. 432 (Oct): 65–87. https://doi.org/10.1016/j.jsv.2018.06.029.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 147Issue 5May 2021

History

Received: May 5, 2020
Accepted: Jan 14, 2021
Published online: Feb 26, 2021
Published in print: May 1, 2021
Discussion open until: Jul 26, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Research Fellow, School of Civil Engineering, Univ. of Queensland, St Lucia, QLD 4072, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-4815-6712. Email: [email protected]
Professor, School of Civil Engineering, Univ. of Queensland, St Lucia, QLD 4072, Australia. ORCID: https://orcid.org/0000-0002-7604-1744. Email: [email protected]
D. M. Pedroso, A.M.ASCE [email protected]
Senior Lecturer, School of Civil Engineering, Univ. of Queensland, St Lucia, QLD 4072, Australia. Email: [email protected]
Associate Professor, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Associate Professor, Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share