Technical Papers
Aug 19, 2020

Dynamic Physical Model for MR Damper Considering Chain Deflection in Preyield Stage

Publication: Journal of Engineering Mechanics
Volume 146, Issue 11

Abstract

A novel dynamic physical model for a magnetorheological (MR) damper is proposed. In this model, the hysteretic properties are considered to result from the difference between the working mechanism of MR fluids in their preyield and postyield stages. In the preyield stage, the MR damper’s force is caused by the chain deflection of MR fluids, which can be described by a particle-chain model. However, in the postyield stage, the MR damper’s force is caused by the flow gradient of MR fluids, which can be accurately predicted by the quasi-static model. Therefore, the proposed model is a combination of a particle-chain model and quasi-static model. The input-current dependence and loading-condition dependence of MR damper are then addressed. By establishing the relationship between model parameters and input current, the input-current dependence is solved. By analyzing the physical mechanism of the proposed model and its consistency with experimental data, the relevance with the loading amplitude and frequency is revealed. For the purposes of validation, comparative studies between the proposed physical model and phenomenological models such as the extended Bouc-Wen model under different loading conditions are carried out. Numerical results show that the proposed model produces a highly accurate description on MR damper’s hysteretic properties and maintains better robustness for the cases with various loading conditions. Also, the dilemma between accuracy, robustness, and complexity inherent in traditional phenomenological models can be elegantly solved by the proposed physical model.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The supports of the National Key R&D Program of China (Grant No. 2017YFC0803300), the National Natural Science Foundation of China (Grant Nos. 51878505, 51678450, and 51725804), and the Ministry of Science and Technology of China (Grant No. SLDRCE19-B-26) are highly appreciated.

References

Arsava, K. S., and Y. Kim. 2015. “Modeling of magnetorheological dampers under various impact loads.” Shock Vib. 2015 (12): 1–20. https://doi.org/10.1155/2015/905186.
Bahar, A., F. Pozo, L. Acho, J. Rodellar, and A. Barbat. 2010. “Hierarchical semi-active control of base-isolated structures using a new inverse model of magnetorheological dampers.” Comput. Struct. 88 (7–8): 483–496. https://doi.org/10.1016/j.compstruc.2010.01.006.
Bai, X. X., F. L. Cai, and P. Chen. 2019. “Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers.” Mech. Syst. Sig. Process. 117 (Feb): 157–169. https://doi.org/10.1016/j.ymssp.2018.07.050.
Bai, X. X., P. Chen, and L. J. Qian. 2015. “Principle and validation of modified hysteretic models for magnetorheological dampers.” Smart Mater. Struct. 24 (8): 085014. https://doi.org/10.1088/0964-1726/24/8/085014.
Batterbee, D. C., N. D. Sims, R. Stanway, and M. Rennison. 2007a. “Magnetorheological landing gear: 2. Validation using experimental data.” Smart Mater. Struct. 16 (6): 2441. https://doi.org/10.1088/0964-1726/16/6/047.
Batterbee, D. C., N. D. Sims, R. Stanway, and Z. Wolejsza. 2007b. “Magnetorheological landing gear: 1. A design methodology.” Smart Mater. Struct. 16 (6): 2429. https://doi.org/10.1088/0964-1726/16/6/046.
Bhatnagar, R. M. 2013. “Transient effect modelling of magnetorheological fluid–based damper at low speed and its comparison with the existing magnetorheological damper models.” J. Intell. Mater. Syst. Struct. 24 (12): 1506–1523. https://doi.org/10.1177/1045389X12474355.
Bhatnagar, R. M. 2018. “A nonlinear transient model for magnetorheological damper response for a time varying field controllable yield shear stress.” J. Braz. Soc. Mech. Sci. Eng. 40 (9): 425. https://doi.org/10.1007/s40430-018-1343-x.
Boada, M. J. L., B. L. Boada, and V. Diaz. 2018. “A novel inverse dynamic model for a magnetorheological damper based on network inversion.” J. Vib. Control 24 (15): 3434–3453. https://doi.org/10.1177/1077546317705991.
Burton, S. A., N. Makris, I. Konstantopoulos, and P. J. Antsaklis. 1996. “Modeling the response of ER damper: Phenomenology and emulation.” J. Eng. Mech. 122 (9): 897–906. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:9(897).
Çeşmeci, Ş., and T. Engin. 2010. “Modeling and testing of a field-controllable magnetorheological fluid damper.” Int. J. Mech. Sci. 52 (8): 1036–1046. https://doi.org/10.1016/j.ijmecsci.2010.04.007.
Chang, C. C., and P. Roschke. 1998. “Neural network modeling of a magnetorheological damper.” J. Intell. Mater. Syst. Struct. 9 (9): 755–764. https://doi.org/10.1177/1045389X9800900908.
Chang, C. C., and L. Zhou. 2002. “Neural network emulation of inverse dynamics for a magnetorheological damper.” J. Struct. Eng. 128 (2): 231–239. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:2(231).
Chen, P., X. X. Bai, L. J. Qian, and S. B. Choi. 2018. “An approach for hysteresis modeling based on shape function and memory mechanism.” IEEE/ASME Trans. Mechatron. 23 (3): 1270–1278. https://doi.org/10.1109/TMECH.2018.2833459.
Choi, S. B., S. K. Lee, and Y. P. Park. 2001. “A hysteresis model for the field-dependent damping force of a magnetorheological damper.” J. Sound Vib. 245 (2): 375–383. https://doi.org/10.1006/jsvi.2000.3539.
Chooi, W. W., and S. O. Oyadiji. 2008. “Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions.” Comput. Struct. 86 (3–5): 473–482. https://doi.org/10.1016/j.compstruc.2007.02.002.
Chooi, W. W., and S. O. Oyadiji. 2009. “Mathematical modeling, analysis, and design of magnetorheological (MR) dampers.” J. Vib. Acoust. 131 (6): 061002. https://doi.org/10.1115/1.3142884.
Dahl, P. R. 1976. “Solid friction damping of mechanical vibrations.” AIAA J. 14 (12): 1675–1682. https://doi.org/10.2514/3.61511.
De Wit, C. C., H. Olsson, K. J. Astrom, and P. Lischinsky. 1995. “A new model for control of systems with friction.” IEEE Trans. Autom. Control 40 (3): 419–425. https://doi.org/10.1109/9.376053.
Dominguez, A., R. Sedaghati, and I. Stiharu. 2006a. “A new dynamic hysteresis model for magnetorheological dampers.” Smart Mater. Struct. 15 (5): 1179–1189. https://doi.org/10.1088/0964-1726/15/5/004.
Dominguez, A., R. Sedaghati, and I. Stiharu. 2006b. “Semi-active vibration control of adaptive structures using magnetorheological dampers.” AIAA J. 44 (7): 1563–1571. https://doi.org/10.2514/1.18402.
Dominguez, A., R. Sedaghati, and I. Stiharu. 2008. “Modeling and application of MR dampers in semi-adaptive structures.” Comput. Struct. 86 (3–5): 407–415. https://doi.org/10.1016/j.compstruc.2007.02.010.
Domínguez-González, A., I. Stiharu, and R. Sedaghati. 2014. “Practical hysteresis model for magnetorheological dampers.” J. Intell. Mater. Syst. Struct. 25 (8): 967–979. https://doi.org/10.1177/1045389X13502867.
Ekkachai, K., K. Tungpimolrut, and I. Nilkhamhang. 2013. “Force control of a magnetorheological damper using an elementary hysteresis model-based feedforward neural network.” Smart Mater. Struct. 22 (11): 115030. https://doi.org/10.1088/0964-1726/22/11/115030.
Gamota, D. R., and F. E. Filisko. 1991. “Dynamic mechanical studies of electrorheological materials: Moderate frequencies.” J. Rheol. 35 (3): 399–425. https://doi.org/10.1122/1.550221.
Goldasz, J., and A. A. Alexandridis. 2012. “Medium-and high-frequency analysis of magnetorheological fluid dampers.” J. Vib. Control 18 (14): 2140–2148. https://doi.org/10.1177/1077546311428637.
Guo, P., X. Guan, and J. Ou. 2014. “Physical modeling and design method of the hysteretic behavior of magnetorheological dampers.” J. Intell. Mater. Syst. Struct. 25 (6): 680–696. https://doi.org/10.1177/1045389X13500576.
Guo, S., S. Yang, and C. Pan. 2006. “Dynamic modeling of magnetorheological damper behaviors.” J. Intell. Mater. Syst. Struct. 17 (1): 3–14. https://doi.org/10.1177/1045389X06055860.
Gurtin, M. E. 1982. Vol. 158 of An introduction to continuum mechanics. Cambridge, MA: Academic Press.
Ikhouane, F., and S. J. Dyke. 2007. “Modeling and identification of a shear mode magnetorheological damper.” Smart Mater. Struct. 16 (3): 605–616. https://doi.org/10.1088/0964-1726/16/3/007.
Ismail, M., F. Ikhouane, and J. Rodellar. 2009. “The hysteresis Bouc-Wen model, a survey.” Arch. Comput. Methods Eng. 16 (2): 161–188. https://doi.org/10.1007/s11831-009-9031-8.
Jiménez, R., and L. Álvarez-Icaza. 2005. “LuGre friction model for a magnetorheological damper.” Struct. Control Health Monit. 12 (1): 91–116. https://doi.org/10.1002/stc.58.
Kamath, G. M., M. K. Hurt, and N. M. Wereley. 1996. “Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers.” Smart Mater. Struct. 5 (5): 576–590. https://doi.org/10.1088/0964-1726/5/5/007.
Kamath, G. M., N. M. Wereley, and M. R. Jolly. 1999. “Characterization of magnetorheological helicopter lag dampers.” J. Am. Helicopter Soc. 44 (3): 234–248. https://doi.org/10.4050/JAHS.44.234.
Kwok, N. M., Q. P. Ha, T. H. Nguyen, J. Li, and B. Samali. 2006. “A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization.” Sens. Actuators, A 132 (2): 441–451. https://doi.org/10.1016/j.sna.2006.03.015.
Lau, Y. K., and W. H. Liao. 2005. “Design and analysis of magnetorheological dampers for train suspension.” Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 219 (4): 261–276. https://doi.org/10.1243/095440905X8899.
Lee, D. Y., and N. M. Wereley. 1999. “Quasi-steady Herschel-Bulkley analysis of electro and magneto-rheological flow mode dampers.” J. Intell. Mater. Syst. Struct. 10 (10): 761–769. https://doi.org/10.1106/E3LT-LYN6-KMT2-VJJD.
Li, J., Y. B. Peng, and J. B. Chen. 2011. “Nonlinear stochastic optimal control strategy of hysteretic structures.” Struct. Eng. Mech. 38 (1): 39–63. https://doi.org/10.12989/sem.2011.38.1.039.
Lin, X., and S. Chen. 2016. “Optimal inverse magnetorheological damper modeling using shuffled frog-leaping algorithm–based adaptive neuro-fuzzy inference system approach.” Adv. Mech. Eng. 8 (8): 1687814016662770. https://doi.org/10.1177/1687814016662770.
Manjeet, K., and C. M. Sujatha. 2018. “Modeling and optimization of non-linear Herschel-Bulkley fluid model based magnetorheological valve geometry.” In Proc., 2018 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM), 413–420. New York: IEEE.
Mao, M., W. Hu, Y. T. Choi, N. M. Wereley, A. L. Browne, J. Ulicny, and N. Johnson. 2013. “Nonlinear modeling of magnetorheological energy absorbers under impact conditions.” Smart Mater. Struct. 22 (11): 115015. https://doi.org/10.1088/0964-1726/22/11/115015.
Metered, H., P. Bonello, and S. O. Oyadiji. 2010. “The experimental identification of magnetorheological dampers and evaluation of their controllers.” Mech. Syst. Sig. Process. 24 (4): 976–994. https://doi.org/10.1016/j.ymssp.2009.09.005.
Nguyen, Q. H., and S. B. Choi. 2009. “Dynamic modeling of an electrorheological damper considering the unsteady behavior of electrorheological fluid flow.” Smart Mater. Struct. 18 (5): 055016. https://doi.org/10.1088/0964-1726/18/5/055016.
Pang, L., G. Kamath, and N. Wereley. 1998. Analysis and testing of a linear stroke magnetorheological damper. Paper No. AIAA 98-2040. Washington, DC: American Institute of Aeronautics and Astronautics.
Peel, D. J., R. Stanway, and W. A. Bullough. 1996. “Dynamic modelling of an ER vibration damper for vehicle suspension applications.” Smart Mater. Struct. 5 (5): 591–606. https://doi.org/10.1088/0964-1726/5/5/008.
Peng, Y. B., R. Ghanem, and J. Li. 2012. “Investigations of microstructured behaviors of magnetorheological suspensions.” J. Intell. Mater. Syst. Struct. 23 (12): 1351–1370. https://doi.org/10.1177/1045389X12447288.
Peng, Y. B., R. Ghanem, and J. Li. 2013. “Generalized optimal control policy for stochastic optimal control of structures.” Struct. Control Health Monit. 20 (2): 187–209. https://doi.org/10.1002/stc.483.
Peng, Y. B., and J. Li. 2011. “Multiscale analysis of stochastic fluctuations of dynamic yield of magnetorheological fluids.” Int. J. Multiscale Comput. Eng. 9 (2): 175–191. https://doi.org/10.1615/IntJMultCompEng.v9.i2.30.
Peng, Y. B., J. G. Yang, and J. Li. 2018. “Parameter identification of modified Bouc–Wen model and analysis of size effect of magnetorheological dampers.” J. Intell. Mater. Syst. Struct. 29 (7): 1464–1480. https://doi.org/10.1177/1045389X17740963.
Peng, Y. B., and Z. K. Zhang. 2020. “Optimal MR damper–based semiactive control scheme for strengthening seismic capacity and structural reliability.” J. Eng. Mech. 146 (6): 04020045. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001768.
Peng, Y. B., Z. K. Zhang, J. G. Yang, and L. H. Wang. 2019. “Full-scale simulations of magnetorheological damper for implementation of semi-actively structural control.” J. Mech. 35 (4): 549–562. https://doi.org/10.1017/jmech.2018.26.
Rodriguez, A., N. Iwata, F. Ikhouane, and J. Rodellar. 2008. “Model identification of a large-scale magnetorheological fluid damper.” Smart Mater. Struct. 18 (1): 015010. https://doi.org/10.1088/0964-1726/18/1/015010.
Rossi, A., F. Orsini, A. Scorza, F. Botta, N. Belfiore, and S. Sciuto. 2018. “A review on parametric dynamic models of magnetorheological dampers and their characterization methods.” In Vol. 7 of Actuators, 16. Basel, Switzerland: Multidisciplinary Digital Publishing Institute.
Sims, N. D., D. J. Peel, R. Stanway, A. R. Johnson, and W. A. Bullough. 2000. “The electrorheological long-stroke damper: A new modelling technique with experimental validation.” J. Sound Vib. 229 (2): 207–227. https://doi.org/10.1006/jsvi.1999.2487.
Sims, N. D., R. Stanway, D. J. Peel, W. A. Bullough, and A. R. Johnson. 1999. “Controllable viscous damping: An experimental study of an electrorheological long-stroke damper under proportional feedback control.” Smart Mater. Struct. 8 (5): 601–615. https://doi.org/10.1088/0964-1726/8/5/311.
Snyder, R. A., G. M. Kamath, and N. M. Wereley. 2000. “Characterization and analysis of magneto-rheological damper behavior due to sinusoidal loading.” In Vol. 3989 of Proc., Smart Structures and Materials 2000: Damping and Isolation, 213–229. Bellingham, WA: International Society for Optics and Photonics.
Song, X., M. Ahmadian, and S. C. Southward. 2005. “Modeling magnetorheological dampers with application of nonparametric approach.” J. Intell. Mater. Syst. Struct. 16 (5): 421–432. https://doi.org/10.1177/1045389X05051071.
Spaggiari, A., and E. Dragoni. 2012. “Efficient dynamic modelling and characterization of a magnetorheological damper.” Meccanica 47 (8): 2041–2054. https://doi.org/10.1007/s11012-012-9573-y.
Spencer, B., Jr., S. J. Dyke, M. K. Sain, and J. Carlson. 1997. “Phenomenological model for magnetorheological dampers.” J. Eng. Mech. 123 (3): 230–238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230).
Stanway, R., J. L. Sproston, and A. K. El-Wahed. 1996. “Applications of electro-rheological fluids in vibration control: A survey.” Smart Mater. Struct. 5 (4): 464–482. https://doi.org/10.1088/0964-1726/5/4/011.
Stanway, R., J. L. Sproston, and N. G. Stevens. 1987. “Non-linear modelling of an electro-rheological vibration damper.” J. Electrostat. 20 (2): 167–184. https://doi.org/10.1016/0304-3886(87)90056-8.
Wang, D. H., and W. H. Liao. 2011. “Magnetorheological fluid dampers: A review of parametric modelling.” Smart Mater. Struct. 20 (2): 023001. https://doi.org/10.1088/0964-1726/20/2/023001.
Wang, X., and F. Gordaninejad. 1999. “Flow analysis of field-controllable, electro- and magneto-rheological fluids using Herschel-Bulkley model.” J. Intell. Mater. Syst. Struct. 10 (8): 601–608. https://doi.org/10.1106/P4FL-L1EL-YFLJ-BTRE.
Wang, X., and F. Gordaninejad. 2007. “Flow analysis and modeling of field-controllable, electro- and magneto-rheological fluid dampers.” J. Appl. Mech. 74 (1): 13–22. https://doi.org/10.1115/1.2166649.
Wereley, N. M., L. Pang, and G. M. Kamath. 1998. “Idealized hysteresis modeling of electrorheological and magnetorheological dampers.” J. Intell. Mater. Syst. Struct. 9 (8): 642–649. https://doi.org/10.1177/1045389X9800900810.
Won, J. S., and M. Sunwoo. 2009. “Fuzzy modelling approach to magnetorheological dampers: Forward and inverse model.” Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 223 (8): 1055–1066. https://doi.org/10.1243/09596518JSCE773.
Xia, P. Q. 2003. “An inverse model of MR damper using optimal neural network and system identification.” J. Sound Vib. 266 (5): 1009–1023. https://doi.org/10.1016/S0022-460X(02)01408-6.
Yang, G. 2001. “Large-scale magnetorheological fluid damper for vibration, mitigation: Modeling: Testing and control.” Ph.D. dissertation, Dept. of Civil Engineering and Geological Sciences, Notre Dame Univ.
Yang, G., B. F. Spencer Jr., J. D. Carlson, and M. K. Sain. 2002. “Large-scale MR fluid dampers: Modeling and dynamic performance considerations.” Eng. Struct. 24 (3): 309–323. https://doi.org/10.1016/S0141-0296(01)00097-9.
Yang, G., B. F. Spencer Jr., H. J. Jung, and J. D. Carlson. 2004. “Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications.” J. Eng. Mech. 130 (9): 1107–1114. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:9(1107).
Yu, M., S. Wang, J. Fu, and Y. Peng. 2013. “Unsteady analysis for oscillatory flow of magnetorheological fluid dampers based on Bingham plastic and Herschel–Bulkley models.” J. Intell. Mater. Syst. Struct. 24 (9): 1067–1078. https://doi.org/10.1177/1045389X13476151.
Zeinali, M., S. A. Mazlan, A. Y. A. Fatah, and H. Zamzuri. 2013. “A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system.” Smart Mater. Struct. 22 (12): 125013. https://doi.org/10.1088/0964-1726/22/12/125013.
Zhao, X., S. Wu, and H. Pan. 2018. “A hybrid model of magnetorheological dampers based on generalized hysteretic biviscous operators.” J. Intell. Mater. Syst. Struct. 29 (14): 2979–2985. https://doi.org/10.1177/1045389X18781051.
Zhou, Q., S. R. K. Nielsen, and W. L. Qu. 2006. “Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers.” J. Sound Vib. 296 (1–2): 1–22. https://doi.org/10.1016/j.jsv.2005.10.028.
Zhou, Q., and W. L. Qu. 2002. “Two mechanic models for magneto-rheological damper and corresponding test verification.” Earthquake Eng. Eng. Vibr. 22 (4): 144–150.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 146Issue 11November 2020

History

Received: Jan 7, 2020
Accepted: Jun 5, 2020
Published online: Aug 19, 2020
Published in print: Nov 1, 2020
Discussion open until: Jan 19, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Zhenkai Zhang
Ph.D. Candidate, College of Civil Engineering, Tongji Univ., 1239 Siping Rd., Shanghai 200092, PR China.
Professor, State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji Univ., 1239 Siping Rd., Shanghai 200092, PR China; Professor, Shanghai Institute of Disaster Prevention and Relief, Tongji Univ., 1239 Siping Rd., Shanghai 200092, PR China (corresponding author). ORCID: https://orcid.org/0000-0002-8110-8536. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share