Technical Papers
Dec 28, 2019

DEM Modeling of Grain Size Effect in Brittle Granular Soils

Publication: Journal of Engineering Mechanics
Volume 146, Issue 3

Abstract

The size-dependent strength of individual particles controls several key aspects of the constitutive response of brittle granular materials. Capturing this factor in numerical analyses is essential to accurately model the mechanical behavior of assemblies with particles of different size. In this study, a three-dimensional discrete element method (DEM) model is proposed to reproduce the size dependence of the particle strength by means of a bonded particle framework. Particle fragmentation is modeled explicitly through the disintegration of agglomerates made of bonded elementary spheres. Diametric and oedometric compression tests performed on different sands are used for the calibration and validation of the model. The size effect and variation of the particle strength evaluated in terms of stress and energy measures are interpreted via Weibull statistics. The DEM model calibrated with a set of diametric compression experiments successfully captures the particle strength variability and the size dependence of the failure and yielding strength at particle- and assembly-scale, respectively. The degree of fragmentation during the confined compression of sand and agglomerate assemblies are compared by quantifying the evolution of particle size distribution and a relative breakage index. The satisfactory agreement between experiments and numerical results suggests that the proposed DEM approach can be used to simulate the comminution of crushable granular solids, thus being particularly useful to study size reduction processes in cases where direct testing is impractical.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was primarily supported by the US Department of Energy through Grant No. DE-SC0017615. Partial support of the US Army Research Office through Grant No. W911NF-18-1-0035 is also gratefully acknowledged.

References

Alikarami, R., E. Andò, M. Gkiousas-Kapnisis, A. Torabi, and G. Viggiani. 2015. “Strain localisation and grain breakage in sand under shearing at high mean stress: Insights from in situ X-ray tomography.” Acta Geotech. 10 (1): 15–30. https://doi.org/10.1007/s11440-014-0364-6.
Alonso, E. E., S. Olivella, and N. M. Pinyol. 2005. “A review of Beliche dam.” Géotechnique 55 (4): 267–285. https://doi.org/10.1680/geot.2005.55.4.267.
Alonso, E. E., M. Tapias, and J. Gili. 2012. “Scale effects in rockfill behaviour.” Géotechnique Lett. 2 (3): 155–160. https://doi.org/10.1680/geolett.12.00025.
Altuhafi, F. N., and M. R. Coop. 2011. “Changes to particle characteristics associated with the compression of sands.” Géotechnique 61 (6): 459–471. https://doi.org/10.1680/geot.9.P.114.
Austin, L. G., and O. Trass. 1997. “Size reduction of solids crushing and grinding equipment.” In Handbook of powder science & technology, edited by M. E. Fayed and L. Otten, 586–634. Boston: Springer.
Bažant, Z. P., and B. H. Oh. 1983. “Crack band theory for fracture of concrete.” Matériaux Constr. 16 (3): 155–177. https://doi.org/10.1007/BF02486267.
Ben-Nun, O., I. Einav, and A. Tordesillas. 2010. “Force attractor in confined comminution of granular materials.” Phys. Rev. Lett. 104 (10): 108001. https://doi.org/10.1103/PhysRevLett.104.108001.
Buscarnera, G. 2012. “A conceptual model for the chemo-mechanical degradation of granular geomaterials.” Géotech. Lett. 2 (3): 149–154. https://doi.org/10.1680/geolett.12.00020.
Buscarnera, G., and A. Das. 2015. “Chemo-mechanics of cemented granular solids subjected to precipitation and dissolution of mineral species.” Int. J. Numer. Anal. Methods Geomech. 40 (9): 1295–1320. https://doi.org/10.1002/nag.2486.
Calvetti, F. 2008. “Discrete modelling of granular materials and geotechnical problems.” Eur. J. Environ. Civ. Eng. 12 (7–8): 951–965. https://doi.org/10.1080/19648189.2008.9693055.
Chaudry, M. A., and P. Wriggers. 2018. “On the computational aspects of comminution in discrete element method.” Comput. Part. Mech. 5 (2): 175–189. https://doi.org/10.1007/s40571-017-0161-8.
Ciantia, M. O., M. Arroyo, F. Calvetti, and A. Gens. 2015. “An approach to enhance efficiency of DEM modelling of soils with crushable grains.” Géotechnique 65 (2): 91–110. https://doi.org/10.1680/geot.13.P.218.
Cil, M., J. Schabelski, A. Packman, and G. Buscarnera. 2019. “A miniaturized testing apparatus to study the chemo-mechanics of porous media.” Geotech. Test. J. 43 (4): 20190031. https://doi.org/10.1520/GTJ20190031.
Cil, M. B., and K. A. Alshibli. 2014. “3D evolution of sand fracture under 1D compression.” Geotechnique 64 (5): 351. https://doi.org/10.1680/geot.13.P.119.
Cil, M. B., and G. Buscarnera. 2016. “DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils.” Granular Matter 18 (3): 36. https://doi.org/10.1007/s10035-016-0638-9.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Frossard, E., W. Hu, C. Dano, and P.-Y. Hicher. 2012. “Rockfill shear strength evaluation: A rational method based on size effects.” Géotechnique 62 (5): 415–427. https://doi.org/10.1680/geot.10.P.079.
Fu, R., X. Hu, and B. Zhou. 2017. “Discrete element modeling of crushable sands considering realistic particle shape effect.” Comput. Geotech. 91 (Nov): 179–191. https://doi.org/10.1016/j.compgeo.2017.07.016.
Guimaraes, M. S., J. R. Valdes, A. M. Palomino, and J. C. Santamarina. 2007. “Aggregate production: Fines generation during rock crushing.” Int. J. Miner. Process. 81 (4): 237–247. https://doi.org/10.1016/j.minpro.2006.08.004.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Huang, J., S. Xu, and S. Hu. 2015. “The role of contact friction in the dynamic breakage behavior of granular materials.” Granular Matter 17 (1): 111–120. https://doi.org/10.1007/s10035-014-0543-z.
Indraratna, B., Y. Sun, and S. Nimbalkar. 2016. “Laboratory Assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading.” J. Geotech. Geoenviron. Eng. 142 (7): 04016016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001463.
Itasca Consulting Group, Inc. 2015. PFC—Particle flow code, Ver. 5.0. Manual. Minneapolis: Itasca.
Jaeger, J. C. 1967. “Failure of rocks under tensile conditions.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 4 (2): 219–227. https://doi.org/10.1016/0148-9062(67)90046-0.
Kim, B., M. Prezzi, and R. Salgado. 2005. “Geotechnical properties of fly and bottom ash mixtures for use in highway embankments.” J. Geotech. Geoenviron. Eng. 131 (7): 914–924. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(914).
Kuwajima, K., M. Hyodo, and A. F. Hyde. 2009. “Pile bearing capacity factors and soil crushabiity.” J. Geotech. Geoenviron. Eng. 135 (7): 901–913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000057.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Laufer, I. 2015. “Grain crushing and high-pressure oedometer tests simulated with the discrete element method.” Granular Matter 17 (3): 389–412. https://doi.org/10.1007/s10035-015-0559-z.
Li, H., G. McDowell, and I. Lowndes. 2014. “Discrete-element modelling of rock communition in a cone crusher using a bonded particle model.” Géotech. Lett. 4 (2): 79–82. https://doi.org/10.1680/geolett.14.00006.
Liang, F., M. Sayed, G. A. Al-Muntasheri, F. F. Chang, and L. Li. 2016. “A comprehensive review on proppant technologies.” Petroleum 2 (1): 26–39. https://doi.org/10.1016/j.petlm.2015.11.001.
Lim, W. L., and G. R. McDowell. 2007. “The importance of coordination number in using agglomerates to simulate crushable particles in the discrete element method.” Géotechnique 57 (8): 701–705. https://doi.org/10.1680/geot.2007.57.8.701.
Ma, G., W. Zhou, X.-L. Chang, and M.-X. Chen. 2016. “A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method.” Granular Matter 18 (1): 7. https://doi.org/10.1007/s10035-016-0615-3.
Marsal, R. J. 1967. “Large-scale testing of rockfill materials.” J. Soil Mech. Found. Div. 93 (2): 27–43.
McDowell, G. R. 2002. “On the yielding and plastic compression of sand.” Soils Found. 42 (1): 139–145. https://doi.org/10.3208/sandf.42.139.
McDowell, G. R., and A. Amon. 2000. “The application of weibull statistics to the fracture of soil particles.” Soils Found. 40 (5): 133–141. https://doi.org/10.3208/sandf.40.5_133.
McDowell, G. R., and J. P. De Bono. 2013. “On the micro mechanics of one-dimensional normal compression.” Geotechnique 63 (11): 895–908. https://doi.org/10.1680/geot.12.P.041.
McDowell, G. R., and O. Harireche. 2002. “Discrete element modelling of soil particle fracture.” Géotechnique 52 (2): 131–135. https://doi.org/10.1680/geot.2002.52.2.131.
Mesri, G., and B. Vardhanabhuti. 2009. “Compression of granular materials.” Can. Geotech. J. 46 (4): 369–392. https://doi.org/10.1139/T08-123.
Mindlin, R. D., and H. Deresiewicz. 1953. “Elastic spheres in contact under varying oblique forces.” Trans. ASME J. Appl. Mech. 20: 327–344.
Nakata, Y., Y. Kato, M. Hyodo, A. F. L. Hyde, and H. Murata. 2001. “One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength.” Soils Found. 41 (2): 39–51. https://doi.org/10.3208/sandf.41.2_39.
Ovalle, C., E. Frossard, C. Dano, W. Hu, S. Maiolino, and P.-Y. Hicher. 2014. “The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data.” Acta Mech. 225 (8): 2199–2216. https://doi.org/10.1007/s00707-014-1127-z.
Potyondy, D. 2011. “Parallel-bond refinements to match macroproperties of hard rock.” In Proc., 2nd Int. FLAC/DEM Symp., Continuum and Distinct Element Modeling in Geomechanics, 459–465. Minneapolis: Itasca International.
Potyondy, D. O. 2015a. Material-modeling support in PFC: Technical memorandum ICG7766-L. Minneapolis: Itasca Consulting Group.
Potyondy, D. O. 2015b. “The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions.” Geosyst. Eng. 18 (1): 1–28. https://doi.org/10.1080/12269328.2014.998346.
Potyondy, D. O., and P. A. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Sohn, C., Y. D. Zhang, M. Cil, and G. Buscarnera. 2017. “Experimental assessment of continuum breakage models accounting for mechanical interactions at particle contacts.” Granular Matter 19 (4): 67. https://doi.org/10.1007/s10035-017-0750-5.
Tavares, L. M., and R. P. King. 1998. “Single-particle fracture under impact loading.” Int. J. Miner. Process. 54 (1): 1–28. https://doi.org/10.1016/S0301-7516(98)00005-2.
US Silica Company. 2005. Product data sheet—QROK#1, QROK#2 and QROK#4. Katy, TX: US Silica.
Varadarajan, A., K. G. Sharma, K. Venkatachalam, and A. K. Gupta. 2003. “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng. 129 (3): 206–218. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(206).
Wang, P., and C. Arson. 2016. “Discrete element modeling of shielding and size effects during single particle crushing.” Comput. Geotech. 78 (Sep): 227–236. https://doi.org/10.1016/j.compgeo.2016.04.003.
Weibull, W. 1951. “A statistical distribution function of wide applicability.” J. Appl. Mech. 18 (3): 293–297. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001176.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: Influences of density and pressure.” J. Geotech. Geoenviron. Eng. 140 (12): 04014070. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001176.
Yan, Y., J. Zhao, and S. Ji. 2015. “Discrete element analysis of breakage of irregularly shaped railway ballast.” Geomech. Geoeng. 10 (1): 1–9. https://doi.org/10.1080/17486025.2014.933891.
Yang, Y., and Y. M. Cheng. 2015. “A fractal model of contact force distribution and the unified coordination distribution for crushable granular materials under confined compression.” Powder Technol. 279 (Jul): 1–9. https://doi.org/10.1016/j.powtec.2015.03.006.
Yashima, S., Y. Kanda, and S. Sano. 1987. “Relationships between particle size and fracture energy or impact velocity required to fracture as estimated from single particle crushing.” Powder Technol. 51 (3): 277–282. https://doi.org/10.1016/0032-5910(87)80030-X.
Yoshimoto, N., M. Hyodo, Y. Nakata, R. P. Orense, T. Hongo, and A. Ohnaka. 2012. “Evaluation of shear strength and mechanical properties of granulated coal ash based on single particle strength.” Soils Found. 52 (2): 321–334. https://doi.org/10.1016/j.sandf.2012.02.009.
Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Géotechnique 63 (5): 341–354. https://doi.org/10.1680/geot.11.P.117.
Zhang, Y., and G. Buscarnera. 2018. “Breakage mechanics for granular materials in surface-reactive environments.” J. Mech. Phys. Solids 112 (Mar): 89–108. https://doi.org/10.1016/j.jmps.2017.11.008.
Zhang, Y. D., and G. Buscarnera. 2014. “Grainsize dependence of clastic yielding in unsaturated granular soils.” Granular Matter 16 (4): 469–483. https://doi.org/10.1007/s10035-014-0491-7.
Zhang, Y. D., and G. Buscarnera. 2015. “Prediction of breakage-induced couplings in unsaturated granular soils.” Géotechnique 65 (2): 135–140. https://doi.org/10.1680/geot.14.P.086.
Zhang, Y. D., and G. Buscarnera. 2017. “A rate-dependent breakage model based on the kinetics of crack growth at the grain scale.” Géotechnique 67 (11): 953–967. https://doi.org/10.1680/jgeot.16.P.181.
Zhang, Y. D., G. Buscarnera, and I. Einav. 2016. “Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics.” Geotechnique 66 (2): 149–160. https://doi.org/10.1680/jgeot.15.P.119.
Zhou, M., and E. Song. 2016. “A random virtual crack DEM model for creep behavior of rockfill based on the subcritical crack propagation theory.” Acta Geotech. 11 (4): 827–847. https://doi.org/10.1007/s11440-016-0446-8.
Zhou, W., K. Xu, G. Ma, and X. Chang. 2019. “On the breakage function for constructing the fragment replacement modes.” Particuology 44 (Jun): 207–217. https://doi.org/10.1016/j.partic.2018.08.006.
Zhou, W., L. Yang, G. Ma, X. Chang, Z. Lai, and K. Xu. 2016. “DEM analysis of the size effects on the behavior of crushable granular materials.” Granular Matter 18 (3): 64. https://doi.org/10.1007/s10035-016-0656-7.
Zhu, F., and J. Zhao. 2019. “A peridynamic investigation on crushing of sand particles.” Géotechnique 69 (6): 526–540. https://doi.org/10.1680/jgeot.17.P.274.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 146Issue 3March 2020

History

Received: Mar 3, 2019
Accepted: Jun 20, 2019
Published online: Dec 28, 2019
Published in print: Mar 1, 2020
Discussion open until: May 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Mehmet B. Cil [email protected]
Postdoctoral Researcher, Hopkins Extreme Materials Institute, Johns Hopkins Univ., Baltimore, MD 21218. Email: [email protected]
Changbum Sohn
Ph.D. Student, Dept. of Civil and Environmental Engineering, Northwestern Univ., Evanston, IL 60208.
Associate Professor, Dept. of Civil and Environmental Engineering, Northwestern Univ., Evanston, IL 60208 (corresponding author). ORCID: https://orcid.org/0000-0003-1664-9616. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share