Abstract

We are concerned with controlling wave propagation in an elastic medium by engineering its dispersive properties. To this end, we discuss a flexible and systematic framework for designing the material composition of the unit cell of a periodic medium when given a target dispersion relation or, equivalently, a target group velocity profile at a user-defined frequency range. We cast the inverse medium design problem as a dispersion-constrained optimization problem that minimizes the distance between the target and the computed group velocity profiles. We rely on the Hellmann–Feynman theorem to obtain the computed group velocity of a trial unit cell, and use a gradient-based algorithm to drive the engineered medium’s material properties to convergence. We numerically demonstrate the capabilities of the approach using scalar waves in one and two dimensions. We also use the method to design metamaterials exhibiting user-defined omnidirectional band gaps and to provide numerical evidence of the metamaterial’s intended performance via time-domain simulations.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

We wish to thank Professor Andrea Alù for fruitful discussions, as well as the anonymous reviewers for their constructive comments.

References

Alagoz, B. B., and S. Alagoz. 2011. “Towards earthquake shields: A numerical investigation of earthquake shielding with seismic crystals.” Open J. Acoust. 1 (3): 63–69. https://doi.org/10.4236/oja.2011.13008.
Alù, A., and N. Engheta. 2005. “Achieving transparency with plasmonic and metamaterial coatings.” Phys. Rev. E 72 (1): 016623. https://doi.org/10.1103/PhysRevE.72.016623.
Ashcroft, N. W. 1976. Solid state physics. New York: Holt, Rinehart and Winston.
Balay, S., et al. 2016. PETSc users manual. Lemont, IL: Argonne National Laboratory.
Banerjee, B. 2011. An introduction to metamaterials and waves in composites. Boca Raton, FL: CRC Press.
Biros, G., L. F. Kallivokas, and S.-W. Na. 2004 “Distributed parameter control of a 2D acoustic Helmholtz problem on a halfspace.” In Proc., 21st Int. Conf. on Theoretical and Applied Mechanics (ICTAM04), edited by W. Gutkowski and T. Kowalewski. Warszawa, Poland: IPPT PAN.
Brillouin, L. 1946. Wave propagation in periodic structures: Electric filters and crystal lattices. New York: McGraw-Hill.
Brun, M., S. Guenneau, and A. B. Movchan. 2009. “Achieving control of in-plane elastic waves.” Appl. Phys. Lett. 94 (6): 061903. https://doi.org/10.1063/1.3068491.
Castelló-Lurbe, D., V. Torres-Company, and E. Silvestre. 2014. “Inverse dispersion engineering in silicon waveguides.” J. Opt. Soc. Am. B: Opt. Phys. 31 (8): 1829–1835. https://doi.org/10.1364/JOSAB.31.001829.
Chopra, A. 2011. Dynamics of structures: International version. London: Pearson.
Climente, A., D. Torrent, and J. Sánchez-Dehesa. 2014. “Gradient index lenses for flexural waves based on thickness variations.” Appl. Phys. Lett. 105 (6): 064101. https://doi.org/10.1063/1.4893153.
Colombi, A. 2016. “Resonant metalenses for flexural waves in plates.” J. Acoust. Soc. Am. 140 (5): EL423–EL428. https://doi.org/10.1121/1.4967179.
Colombi, A., D. Colquitt, P. Roux, S. Guenneau, and R. V. Craster. 2016a. “A seismic metamaterial: The resonant metawedge.” Sci. Rep. 6 (1): 27717. https://doi.org/10.1038/srep27717.
Colombi, A., S. Guenneau, P. Roux, and R. V. Craster. 2016b. “Transformation seismology: Composite soil lenses for steering surface elastic Rayleigh waves.” Sci. Rep. 6 (1): 25320. https://doi.org/10.1038/srep25320.
Dubois, M., M. Farhat, E. Bossy, S. Enoch, S. Guenneau, and P. Sebbah. 2013. “Flat lens for pulse focusing of elastic waves in thin plates.” Appl. Phys. Lett. 103 (7): 071915. https://doi.org/10.1063/1.4818716.
Fathi, A., L. F. Kallivokas, and B. Poursartip. 2015. “Full-waveform inversion in three-dimensional PML-truncated elastic media.” Comput. Methods Appl. Mech. Eng. 296 (Nov): 39–72. https://doi.org/10.1016/j.cma.2015.07.008.
Finocchio, G., O. Casablanca, G. Ricciardi, U. Alibrandi, F. Garescì, M. Chiappini, and B. Azzerboni. 2014. “Seismic metamaterials based on isochronous mechanical oscillators.” Appl. Phys. Lett. 104 (19): 191903. https://doi.org/10.1063/1.4876961.
Fletcher, R., and C. M. Reeves. 1964. “Function minimization by conjugate gradients.” Comput. J. 7 (2): 149–154. https://doi.org/10.1093/comjnl/7.2.149.
Goh, H., and L. F. Kallivokas. 2019. “Inverse metamaterial design for controlling band gaps in scalar wave problems.” Wave Motion 88 (May): 85–105. https://doi.org/10.1016/j.wavemoti.2019.02.001.
Huang, J., W. Liu, and Z. Shi. 2017. “Surface-wave attenuation zone of layered periodic structures and feasible application in ground vibration reduction.” Constr. Build. Mater. 141 (Jun): 1–11. https://doi.org/10.1016/j.conbuildmat.2017.02.153.
Kallivokas, L., A. Fathi, S. Kucukcoban, K. Stokoe, J. Bielak, and O. Ghattas. 2013. “Site characterization using full waveform inversion.” Soil Dyn. Earthquake Eng. 47 (Apr): 62–82. https://doi.org/10.1016/j.soildyn.2012.12.012.
Krödel, S., N. Thomé, and C. Daraio. 2015. “Wide band-gap seismic metastructures.” Extreme Mech. Lett. 4 (Sep): 111–117. https://doi.org/10.1016/j.eml.2015.05.004.
Kucukcoban, S., H. Goh, and L. F. Kallivokas. 2019. “On the full-waveform inversion of lamé parameters in semi-infinite solids in plane strain.” Int. J. Solids Struct. 164 (Jun): 104–119. https://doi.org/10.1016/j.ijsolstr.2019.01.019.
Kucukcoban, S., and L. Kallivokas. 2013. “A symmetric hybrid formulation for transient wave simulations in PML-truncated heterogeneous media.” Wave Motion 50 (1): 57–79. https://doi.org/10.1016/j.wavemoti.2012.06.004.
Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry. 2003. “Subwavelength imaging in photonic crystals.” Phys. Rev. B 68 (4): 045115. https://doi.org/10.1103/PhysRevB.68.045115.
Mashayekh, H., L. F. Kallivokas, and J. L. Tassoulas. 2018. “Parameter estimation in layered media using dispersion-constrained inversion.” J. Eng. Mech. 144 (11): 04018099. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001527.
Meseguer, F., M. Holgado, D. Caballero, N. Benaches, J. Sánchez-Dehesa, C. López, and J. Llinares. 1999. “Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal.” Phys. Rev. B 59 (19): 12169–12172. https://doi.org/10.1103/PhysRevB.59.12169.
Miniaci, M., A. Krushynska, F. Bosia, and N. M. Pugno. 2016. “Large scale mechanical metamaterials as seismic shields.” New J. Phys. 18 (8): 083041. https://doi.org/10.1088/1367-2630/18/8/083041.
Moiseyenko, R. P., and V. Laude. 2011 “Material loss influence on the complex band structure and group velocity in phononic crystals.” Phys. Rev. B 83 (6): 064301. https://doi.org/10.1103/PhysRevB.83.064301.
Movchan, A., N. Movchan, I. Jones, and D. Colquitt. 2018. Mathematical modeling of waves in multi-scale structured media. Boca Raton, FL: CRC Press.
Newton, I. 1740. The system of the world, demonstrated in an easy and popular manner: Being a proper introduction of the most sublime philosophy. London: J. Robinson.
Norris, A. N. 2008. “Acoustic cloaking theory.” Proc. R. Soc. London A 464 (2097): 2411–2434. https://doi.org/10.1098/rspa.2008.0076.
Palermo, A., S. Krödel, K. H. Matlack, R. Zaccherini, V. K. Dertimanis, E. N. Chatzi, A. Marzani, and C. Daraio. 2018. “Hybridization of guided surface acoustic modes in unconsolidated granular media by a resonant metasurface.” Phys. Rev. Appl. 9 (5): 054026. https://doi.org/10.1103/PhysRevApplied.9.054026.
Pendry, J. B. 2000. “Negative refraction makes a perfect lens.” Phys. Rev. Lett. 85 (18): 3966–3969. https://doi.org/10.1103/PhysRevLett.85.3966.
Qian, X., and O. Sigmund. 2011. “Isogeometric shape optimization of photonic crystals via Coons patches.” Comput. Methods Appl. Mech. Eng. 200 (25): 2237–2255. https://doi.org/10.1016/j.cma.2011.03.007.
Quarteroni, A., R. Sacco, and F. Saleri. 2010. Vol. 37 of Numerical mathematics. New York: Springer.
Rayleigh, L. 1887. “Xvii. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure.” London Edinburgh Dublin Philos. Mag. J. Sci. 24 (147): 145–159. https://doi.org/10.1080/14786448708628074.
Roman, J. E., C. Campos, E. Romero, and A. Tomas. 2016. SLEPc users manual. València, Spain: Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València.
Rupp, C. J., A. Evgrafov, K. Maute, and M. L. Dunn. 2007. “Design of phononic materials/structures for surface wave devices using topology optimization.” Struct. Multidiscip. Optim. 34 (2): 111–121. https://doi.org/10.1007/s00158-006-0076-0.
Sakoda, K. 2004. Vol. 80 of Optical properties of photonic crystals. New York: Springer.
Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith. 2006. “Metamaterial electromagnetic cloak at microwave frequencies.” Science 314 (5801): 977–980. https://doi.org/10.1126/science.1133628.
Sigmund, O., and J. Søndergaard Jensen. 2003. “Systematic design of phononic band-gap materials and structures by topology optimization.” Philos. Trans. R. Soc. London A 361 (1806): 1001–1019. https://doi.org/10.1098/rsta.2003.1177.
Stone, M., and P. Goldbart. 2009. Mathematics for physics: A guided tour for graduate students. Cambridge: Cambridge University Press.
Torrent, D., Y. Pennec, and B. Djafari-Rouhani. 2014. “Omnidirectional refractive devices for flexural waves based on graded phononic crystals.” J. Appl. Phys. 116 (22): 224902. https://doi.org/10.1063/1.4903972.
Wagner, P.-R., V. K. Dertimanis, E. N. Chatzi, and J. L. Beck. 2018. “Robust-to-uncertainties optimal design of seismic metamaterials.” J. Eng. Mech. 144 (3): 04017181. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001404.
Wang, Y., Z. Luo, N. Zhang, and Z. Kang. 2014. “Topological shape optimization of microstructural metamaterials using a level set method.” Comput. Mater. Sci. 87( May): 178–186. https://doi.org/10.1016/j.commatsci.2014.02.006.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 12December 2019

History

Received: Nov 25, 2018
Accepted: Apr 24, 2019
Published online: Sep 19, 2019
Published in print: Dec 1, 2019
Discussion open until: Feb 19, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Student, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Texas at Austin, Austin, TX 78712. ORCID: https://orcid.org/0000-0003-4854-6435
Professor, Oden Institute for Computational Engineering and Sciences, Univ. of Texas at Austin, Austin, TX 78712 (corresponding author). ORCID: https://orcid.org/0000-0002-7701-6989. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share