Technical Papers
Jul 25, 2019

Asynchronous Spacetime Discontinuous Galerkin Formulation for a Hyperbolic Time-Delay Bulk Damage Model

Publication: Journal of Engineering Mechanics
Volume 145, Issue 10

Abstract

A bulk damage formulation is presented for failure analysis of brittle materials under dynamic loading. A time-delay ordinary differential equation (ODE) is used to model damage evolution. The evolution is driven by the difference between a target static damage value and the instantaneous damage value. A damage length scale is introduced from the model’s intrinsic relaxation time and elastic wave speeds. This length scale addresses the mesh sensitivity problem of some existing damage formulations for dynamic fracture, with less computational effort than some other existing remedies. The authors use the asynchronous spacetime discontinuous Galerkin (aSDG) method for the solution of the resulting hyperbolic system of equations. Local and asynchronous solution process, linear complexity of the solution versus the number of elements, local recovery of balance properties, and high spatial and temporal orders of accuracy are some of the main advantages of the aSDG method. Several numerical examples are presented to demonstrate mesh insensitivity of the method and the effect of boundary conditions on dynamic fracture patterns.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge partial support for this work via the US National Science Foundation (NSF), CMMI—Mechanics of Materials and Structures (MoMS) program Grant No. 1538332.

References

Abedi, R., S.-H. Chung, J. Erickson, Y. Fan, M. Garland, D. Guoy, R. Haber, J. M. Sullivan, S. Thite, and Y. Zhou. 2004. “Spacetime meshing with adaptive refinement and coarsening.” In Proc., 20th Annual Symp. on Computational Geometry, SCG ‘04, 300–309. New York: ACM.
Abedi, R., and R. B. Haber. 2018. “Spacetime simulation of dynamic fracture with crack closure and frictional sliding.” Adv. Model. Simul. Eng. Sci. 5 (1): 22. https://doi.org/10.1186/s40323-018-0116-5.
Abedi, R., R. B. Haber, and P. L. Clarke. 2017. “Effect of random defects on dynamic fracture in quasi-brittle materials.” Int. J. Fract. 208 (1–2): 241–268. https://doi.org/10.1007/s10704-017-0243-x.
Abedi, R., R. B. Haber, and B. Petracovici. 2006a. “A spacetime discontinuous Galerkin method for elastodynamics with element-level balance of linear momentum.” Comput. Methods Appl. Mech. Eng. 195 (25–28): 3247–3273. https://doi.org/10.1016/j.cma.2005.06.013.
Abedi, R., R. B. Haber, S. Thite, and J. Erickson. 2006b. “An h-adaptive spacetime-discontinuous Galerkin method for linearized elastodynamics.” Revue Européenne de Mécanique Numérique Eur. J. Comput. Mech. 15 (6): 619–642. https://doi.org/10.3166/remn.15.619-642.
Abedi, R., M. A. Hawker, R. B. Haber, and K. Matouš. 2010. “An adaptive spacetime discontinuous Galerkin method for cohesive models of elastodynamic fracture.” Int. J. Numer. Methods Eng. 81 (10): 1207–1242. https://doi.org/10.1002/nme.2723.
Abedi, R., and S. Mudaliar. 2017. “An asynchronous spacetime discontinuous Galerkin finite element method for time domain electromagnetics.” Supplement, J. Comput. Phys. 351 (SC): 121–144. https://doi.org/10.1016/j.jcp.2017.09.001.
Acton, K. A., S. C. Baxter, B. Bahmani, P. L. Clarke, and R. Abedi. 2018. “Voronoi tessellation based statistical volume element characterization for use in fracture modeling.” Comput. Methods Appl. Mech. Eng. 336 (2018): 135–155. https://doi.org/10.1016/j.cma.2018.02.025.
Allix, O., and J.-F. Deü. 1997. “Delayed-damage modelling for fracture prediction of laminated composites under dynamic loading.” Eng. Trans. 45 (1): 29–46.
Allix, O., P. Feissel, and P. Thévenet. 2003. “A delay damage mesomodel of laminates under dynamic loading: Basic aspects and identification issues.” Comput. Struct. 81 (12): 1177–1191. https://doi.org/10.1016/S0045-7949(03)00035-X.
Bahmani, B., P. L. Clarke, and R. Abedi. 2018. “A bulk damage model for modeling dynamic fracture in rock.” In Proc., 52nd US Rock Mechanics/Geomechanics Symp., 10. Seattle: American Rock Mechanics Association.
Bahmani, B., M. Yang, A. Nagarajan, P. L. Clarke, S. Soghrati, and R. Abedi. 2019. “Automated homogenization-based fracture analysis: Effects of SVE size and boundary condition.” Comput. Methods Appl. Mech. Eng. 345 (Mar): 701–727. https://doi.org/10.1016/j.cma.2018.11.009.
Bažant, Z. P., and T. B. Belytschko. 1985. “Wave propagation in a strain-softening bar: Exact solution.” J. Eng. Mech. 111 (3): 381–389. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:3(381).
Bažant, Z. P., T. B. Belytschko, and T.-P. Chang. 1984. “Continuum theory for strain-softening.” J. Eng. Mech. 110 (12): 1666–1692. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1666).
Bažant, Z. P., and F.-B. Lin. 1988. “Nonlocal smeared cracking model for concrete fracture.” J. Struct. Eng. 114 (11): 2493–2510. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:11(2493).
Belytschko, T., Z. P. Bažant, H. Yul-Woong, and C. Ta-Peng. 1986. “Strain-softening materials and finite-element solutions.” Comput. Struct. 23 (2): 163–180. https://doi.org/10.1016/0045-7949(86)90210-5.
Belytschko, T., and T. Black. 1999. “Elastic crack growth in finite elements with minimal remeshing.” Int. J. Numer. Methods Eng. 45 (5): 601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3C601::AID-NME598%3E3.0.CO;2-S.
Camacho, G. T., and M. Ortiz. 1996. “Computational modelling of impact damage in brittle materials.” Int. J. Solids Struct. 33 (20–22): 2899–2938. https://doi.org/10.1016/0020-7683(95)00255-3.
Chiarelli, L., F. Fumes, E. B. de Moraes, G. Haveroth, J. L. Boldrini, and M. L. Bittencourt. 2017. “Comparison of high order finite element and discontinuous Galerkin methods for phase field equations: Application to structural damage.” Comput. Math. Appl. 74 (7): 1542–1564. https://doi.org/10.1016/j.camwa.2017.05.003.
Clarke, P., R. Abedi, B. Bahmani, K. Acton, and S. Baxter. 2017. “Effect of the spatial inhomogeneity of fracture strength on fracture pattern for -brittle materials.” In Proc., ASME 2017 Int. Mechanical Engineering Congress and Exposition, V009T12A045–V009T12A045. New York: ASME.
Comi, C. 1999. “Computational modelling of gradient-enhanced damage in quasi-brittle materials.” Mech. Cohesive-frictional Mater. Int. J. Exp. Modell. Comput. Mater. Struct. 4 (1): 17–36. https://doi.org/10.1002/(SICI)1099-1484(199901)4:1%3C17::AID-CFM55%3E3.0.CO;2-6.
Daux, C., N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko. 2000. “Arbitrary branched and intersecting cracks with the extended finite element method.” Int. J. Numer. Methods Eng. 48 (12): 1741–1760. https://doi.org/10.1002/1097-0207(20000830)48:12%3C1741::AID-NME956%3E3.0.CO;2-L.
De Vree, J., W. Brekelmans, and M. Van Gils. 1995. “Comparison of nonlocal approaches in continuum damage mechanics.” Comput. Struct. 55 (4): 581–588. https://doi.org/10.1016/0045-7949(94)00501-S.
Duarte, C. A., I. Babuška, and J. T. Oden. 2000. “Generalized finite element methods for three-dimensional structural mechanics problems.” Comput. Struct. 77 (2): 215–232. https://doi.org/10.1016/S0045-7949(99)00211-4.
Fleming, W. H. 1964. Functions of several variables. Reading, MA: Addison-Wesley.
Hamdi, E., N. B. Romdhane, and J.-M. Le Cléach. 2011. “A tensile damage model for rocks: Application to blast induced damage assessment.” Comput. Geotech. 38 (2): 133–141. https://doi.org/10.1016/j.compgeo.2010.10.009.
Häussler-Combe, U., and T. Kühn. 2012. “Modeling of strain rate effects for concrete with viscoelasticity and retarded damage.” Int. J. Impact Eng. 50 (Dec): 17–28. https://doi.org/10.1016/j.ijimpeng.2012.08.002.
Häussler-Combe, U., and E. Panteki. 2016. “Modeling of concrete spallation with damaged viscoelasticity and retarded damage.” Int. J. Solids Struct. 90 (Jul): 153–166. https://doi.org/10.1016/j.ijsolstr.2016.03.022.
Hesthaven, J. S., and T. Warburton. 2007. Nodal discontinuous Galerkin methods: Algorithms, analysis, and applications. New York: Springer.
Jirásek, M. 2004. “Nonlocal theories in continuum mechanics.” Acta Polytech. 44 (5–6): 16–34.
Jirásek, M., and B. Patzák. 2002. “Consistent tangent stiffness for nonlocal damage models.” Comput. Struct. 80 (14–15): 1279–1293. https://doi.org/10.1016/S0045-7949(02)00078-0.
Junker, P., S. Schwarz, J. Makowski, and K. Hackl. 2017. “A relaxation-based approach to damage modeling.” Continuum Mech. Thermodyn. 29 (1): 291–310. https://doi.org/10.1007/s00161-016-0528-8.
Kamensky, D., G. Moutsanidis, and Y. Bazilevs. 2018. “Hyperbolic phase field modeling of brittle fracture. Part I: Theory and simulations.” J. Mech. Phys. Solids 121 (Dec): 81–98. https://doi.org/10.1016/j.jmps.2018.07.010.
Lasry, D., and T. Belytschko. 1988. “Localization limiters in transient problems.” Int. J. Solids Struct. 24 (6): 581–597. https://doi.org/10.1016/0020-7683(88)90059-5.
Londono, J. G., L. Berger-Vergiat, and H. Waisman. 2017. “An equivalent stress-gradient regularization model for coupled damage-viscoelasticity.” Comput. Methods Appl. Mech. Eng. 322 (Aug): 137–166. https://doi.org/10.1016/j.cma.2017.04.010.
Loret, B., and J. H. Prevost. 1990. “Dynamic strain localization in elasto-(visco-) plastic solids. Part 1: General formulation and one-dimensional examples.” Comput. Methods Appl. Mech. Eng. 83 (3): 247–273. https://doi.org/10.1016/0045-7825(90)90073-U.
Lyakhovsky, V., Y. Hamiel, and Y. Ben-Zion. 2011. “A non-local visco-elastic damage model and dynamic fracturing.” J. Mech. Phys. Solids 59 (9): 1752–1776. https://doi.org/10.1016/j.jmps.2011.05.016.
Mazars, J. 1984. “Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure.” These de Docteur es Sciences, Laboratoire de Mecanique et Technologie, l’université Pierre et Marie Curie.
Miehe, C., M. Hofacker, and F. Welschinger. 2010. “A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits.” Comput. Methods Appl. Mech. Eng. 199 (45–48): 2765–2778. https://doi.org/10.1016/j.cma.2010.04.011.
Moës, N., J. Dolbow, and T. Belytschko. 1999. “A finite element method for crack growth without remeshing.” Int. J. Numer. Methods Eng. 46 (1): 131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.0.CO;2-J.
Moreau, K., N. Moës, D. Picart, and L. Stainier. 2015. “Explicit dynamics with a non-local damage model using the thick level set approach.” Int. J. Numer. Methods Eng. 102 (3–4): 808–838. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.0.CO;2-J.
Murakami, S. 2012. Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture. New York: Springer.
Peerlings, R., R. De Borst, W. Brekelmans, and M. Geers. 1998. “Gradient-enhanced damage modelling of concrete fracture.” Mech. Cohesive-frictional Mater. 3 (4): 323–342. https://doi.org/10.1002/(SICI)1099-1484(1998100)3:4%3C323::AID-CFM51%3E3.0.CO;2-Z.
Peerlings, R., M. Geers, R. De Borst, and W. Brekelmans. 2001. “A critical comparison of nonlocal and gradient-enhanced softening continua.” Int. J. Solids Struct. 38 (44–45): 7723–7746. https://doi.org/10.1016/S0020-7683(01)00087-7.
Pereira, L., J. Weerheijm, and L. Sluys. 2017. “A new effective rate dependent damage model for dynamic tensile failure of concrete.” Eng. Fract. Mech. 176 (May): 281–299. https://doi.org/10.1016/j.engfracmech.2017.03.048.
Ren, X., J.-S. Chen, J. Li, T. Slawson, and M. Roth. 2011. “Micro-cracks informed damage models for brittle solids.” Int. J. Solids Struct. 48 (10): 1560–1571. https://doi.org/10.1016/j.ijsolstr.2011.02.001.
Sluys, L., R. De Borst, and H.-B. Mühlhaus. 1993. “Wave propagation, localization and dispersion in a gradient-dependent medium.” Int. J. Solids Struct. 30 (9): 1153–1171. https://doi.org/10.1016/0020-7683(93)90010-5.
Spivak, M. 1965. Calculus on manifolds. New York: W. A. Benjamin.
Strouboulis, T., I. Babuška, and K. Copps. 2000. “The design and analysis of the generalized finite element method.” Comput. Methods Appl. Mech. Eng. 181 (1–3): 43–69. https://doi.org/10.1016/S0045-7825(99)00072-9.
Stumpf, H., and K. Hackl. 2003. “Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-brittle materials.” Int. J. Solids Struct. 40 (6): 1567–1584. https://doi.org/10.1016/S0020-7683(02)00643-1.
Suffis, A., T. A. Lubrecht, and A. Combescure. 2003. “Damage model with delay effect: Analytical and numerical studies of the evolution of the characteristic damage length.” Int. J. Solids Struct. 40 (13–14): 3463–3476. https://doi.org/10.1016/S0020-7683(03)00153-7.
Truster, T. J., and A. Masud. 2013. “A discontinuous/continuous Galerkin method for modeling of interphase damage in fibrous composite systems.” Comput. Mech. 52 (3): 499–514. https://doi.org/10.1007/s00466-012-0827-2.
Vignjevic, R., N. Djordjevic, T. De Vuyst, and S. Gemkow. 2018. “Modelling of strain softening materials based on equivalent damage force.” Comput. Methods Appl. Mech. Eng. 335 (Jun): 52–68. https://doi.org/10.1016/j.cma.2018.01.049.
Wang, Z.-L., Y.-C. Li, and J. Wang. 2007. “A damage-softening statistical constitutive model considering rock residual strength.” Comput. Geosci. 33 (1): 1–9. https://doi.org/10.1016/j.cageo.2006.02.011.
Wells, G. N., K. Garikipati, and L. Molari. 2004. “A discontinuous Galerkin formulation for a strain gradient-dependent damage model.” Comput. Methods Appl. Mech. Eng. 193 (33–35): 3633–3645. https://doi.org/10.1016/j.cma.2004.01.020.
Zhao, H., C. Zhang, W.-G. Cao, and M.-H. Zhao. 2016. “Statistical meso-damage model for quasi-brittle rocks to account for damage tolerance principle.” Environ. Earth Sci. 75 (10): 862. https://doi.org/10.1007/s12665-016-5681-7.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 10October 2019

History

Received: Oct 5, 2018
Accepted: Feb 19, 2019
Published online: Jul 25, 2019
Published in print: Oct 1, 2019
Discussion open until: Dec 25, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Bahador Bahmani
Graduate Student, Univ. of Tennessee Space Institute, Tullahoma, TN 37388; Univ. of Tennessee, Knoxville, TN 37996.
Associate Professor, Univ. of Tennessee Space Institute, Tullahoma, TN 37388; Univ. of Tennessee, Knoxville, TN 37996 (corresponding author). ORCID: https://orcid.org/0000-0002-8864-6177. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share