Technical Papers
May 8, 2019

Simulating the Fracture of Notched Mortar Beams through Extended Finite-Element Method and Peridynamics

Publication: Journal of Engineering Mechanics
Volume 145, Issue 7

Abstract

This paper simulates fracture in notched mortar beams under three-point bending using an extended finite-element method (XFEM) and peridynamics. A three-phase microstructure (i.e., cement paste, aggregates, and paste–aggregate interface) is used for the constitutive modeling of the mortar in order to obtain the elastic properties for simulation. In the XFEM approach, the simulated homogenized elastic modulus is used along with the total fracture energy of the cement mortar in a damage model to predict the fracture response of the mortar, including crack propagation and fracture parameters [Mode I stress intensity factor, KIC, and critical crack tip opening displacement (CTODC)]. The damage model incorporates a maximum principal stress-based damage initiation criterion and a traction-separation law for damage evolution. In the peridynamics approach, a bond-based model involving a prototype microelastic brittle (PMB) material model is used and implemented in LS-DYNA. The elastic properties and fracture energy release rates are used as inputs in the PMB model, along with the choice of peridynamic horizon size. Comparisons with experimental fracture properties (KIC, CTODC) and crack propagation paths from digital image correlation show that both approaches yield satisfactory results, particularly for KIC and crack extension. Thus, both methods can be adopted for fracture simulation of cement-based materials.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge financial support for this research provided by the US Department of Energy, Nuclear Engineering University Program (NEUP) under Grant No. DE-NE0008398. Sumanta Das acknowledges the support from College of Engineering (COE) and the Department of Civil and Environmental Engineering at the University of Rhode Island (URI). The contents of this paper reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein, and do not necessarily reflect the views and policies of the funding agency, nor do the contents constitute a standard, specification, or a regulation.

References

Akkurt, I., C. Basyigit, S. Kilincarslan, B. Mavi, and A. Akkurt. 2006. “Radiation shielding of concretes containing different aggregates.” Cem. Concr. Compos. 28 (2): 153–157. https://doi.org/10.1016/j.cemconcomp.2005.09.006.
Al-Jabri, K. S., A. W. Hago, A. S. Al-Nuaimi, and A. H. Al-Saidy. 2005. “Concrete blocks for thermal insulation in hot climate.” Cem. Concr. Res. 35 (8): 1472–1479. https://doi.org/10.1016/j.cemconres.2004.08.018.
Azdoud, Y., F. Han, and G. Lubineau. 2014. “The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture.” Comput. Mech. 54 (3): 711–722. https://doi.org/10.1007/s00466-014-1023-3.
Bayesteh, H., and S. Mohammadi. 2013. “XFEM fracture analysis of orthotropic functionally graded materials.” Composites Part B 44 (1): 8–25. https://doi.org/10.1016/j.compositesb.2012.07.055.
Bažant, Z. P. 2002. “Concrete fracture models: Testing and practice.” Eng. Fract. Mech. 69 (2): 165–205. https://doi.org/10.1016/S0013-7944(01)00084-4.
Belytschko, T., and T. Black. 1999. “Elastic crack growth in finite elements with minimal remeshing.” Int. J. Numer. Methods Eng. 45 (5): 601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3C601::AID-NME598%3E3.0.CO;2-S.
Bobiński, J., and J. Tejchman. 2016. “A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and extended finite element method.” Finite Elem. Anal. Des. 114 (Jul): 1–21. https://doi.org/10.1016/j.finel.2016.02.001.
Bolander, J. E., and N. Sukumar. 2005. “Irregular lattice model for quasistatic crack propagation.” Phys. Rev. B 71 (9): 094106. https://doi.org/10.1103/PhysRevB.71.094106.
Chu, T. C., W. F. Ranson, and M. A. Sutton. 1985. “Applications of digital-image-correlation techniques to experimental mechanics.” Exp. Mech. 25 (3): 232–244. https://doi.org/10.1007/BF02325092.
Curiel Sosa, J. L., and N. Karapurath. 2012. “Delamination modelling of GLARE using the extended finite element method.” Compos. Sci. Technol. 72 (7): 788–791. https://doi.org/10.1016/j.compscitech.2012.02.005.
Cusson, D., and T. Hoogeveen. 2008. “Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking.” Cem. Concr. Res. 38 (6): 757–765. https://doi.org/10.1016/j.cemconres.2008.02.001.
Das, S., M. Aguayo, V. Dey, R. Kachala, B. Mobasher, G. Sant, and N. Neithalath. 2014a. “The fracture response of blended formulations containing limestone powder: Evaluations using two-parameter fracture model and digital image correlation.” Cem. Concr. Compos. 53 (Oct): 316–326. https://doi.org/10.1016/j.cemconcomp.2014.07.018.
Das, S., M. Aguayo, G. Sant, B. Mobasher, and N. Neithalath. 2015a. “Fracture process zone and tensile behavior of blended binders containing limestone powder.” Cem. Concr. Res. 73 (Jul): 51–62. https://doi.org/10.1016/j.cemconres.2015.03.002.
Das, S., A. Maroli, and N. Neithalath. 2016a. “Finite element-based micromechanical modeling of the influence of phase properties on the elastic response of cementitious mortars.” Constr. Build. Mater. 127 (Nov): 153–166. https://doi.org/10.1016/j.conbuildmat.2016.09.153.
Das, S., A. Maroli, S. S. Singh, T. Stannard, X. Xiao, N. Chawla, and N. Neithalath. 2016b. “A microstructure-guided constitutive modeling approach for random heterogeneous materials: Application to structural binders.” Comput. Mater. Sci. 119 (Jun): 52–64. https://doi.org/10.1016/j.commatsci.2016.03.040.
Das, S., B. Souliman, D. Stone, and N. Neithalath. 2014b. “Synthesis and properties of a novel structural binder utilizing the chemistry of iron carbonation.” ACS Appl. Mater. Interfaces 6 (11): 8295–8304. https://doi.org/10.1021/am5011145.
Das, S., P. Yang, S. S. Singh, J. C. E. Mertens, X. Xiao, N. Chawla, and N. Neithalath. 2015b. “Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models.” Cem. Concr. Res. 78: 252–262. https://doi.org/10.1016/j.cemconres.2015.08.004.
da Silva, W. R. L., J. Němeček, and P. Štemberk. 2013. “Application of multiscale elastic homogenization based on nanoindentation for high performance concrete.” Adv. Eng. Software 62–63 (Aug–Sep): 109–118. https://doi.org/10.1016/j.advengsoft.2013.04.007.
Eftekhari, M., S. Hatefi Ardakani, and S. Mohammadi. 2014. “An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete.” Theor. Appl. Fract. Mech. 72 (Aug): 64–75. https://doi.org/10.1016/j.tafmec.2014.06.005.
Feerick, E. M., X. C. Liu, and P. McGarry. 2013. “Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).” J. Mech. Behav. Biomed. Mater. 20 (Apr): 77–89. https://doi.org/10.1016/j.jmbbm.2012.12.004.
Fernandes, F., S. Manari, M. Aguayo, K. Santos, T. Oey, Z. Wei, G. Falzone, N. Neithalath, and G. Sant. 2014. “On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials.” Cem. Concr. Compos. 51 (Aug): 14–26. https://doi.org/10.1016/j.cemconcomp.2014.03.003.
Gdoutos, E. E. 2006. Fracture mechanics: An introduction. Dordrecht, Netherlands: Springer.
Golewski, G. L., P. Golewski, and T. Sadowski. 2012. “Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method.” Comput. Mater. Sci 62 (Sep): 75–78. https://doi.org/10.1016/j.commatsci.2012.05.009.
Grondin, F., and M. Matallah. 2014. “How to consider the interfacial transition zones in the finite element modelling of concrete?” Cem. Concr. Res. 58 (Apr): 67–75. https://doi.org/10.1016/j.cemconres.2014.01.009.
Gu, X., Q. Zhang, D. Huang, and Y. Yv. 2016. “Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics.” Eng. Fract. Mech. 160 (Jul): 124–137. https://doi.org/10.1016/j.engfracmech.2016.04.005.
Han, F., G. Lubineau, and Y. Azdoud. 2016. “Adaptive coupling between damage mechanics and peridynamics: A route for objective simulation of material degradation up to complete failure.” J. Mech. Phys. Solids 94 (Sep): 453–472. https://doi.org/10.1016/j.jmps.2016.05.017.
Hashin, Z., and P. J. M. Monteiro. 2002. “An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste.” Cem. Concr. Res. 32 (8): 1291–1300. https://doi.org/10.1016/S0008-8846(02)00792-5.
Hembade, L., N. Neithalath, and S. D. Rajan. 2013. “Understanding the energy implications of phase-change materials in concrete walls through finite-element analysis.” J. Energy Eng. 140 (1): 04013009. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000146.
Hernández-Olivares, F., G. Barluenga, M. Bollati, and B. Witoszek. 2002. “Static and dynamic behaviour of recycled tyre rubber-filled concrete.” Cem. Concr. Res. 32 (10): 1587–1596. https://doi.org/10.1016/S0008-8846(02)00833-5.
Hori, M., and S. Nemat-Nasser. 1993. “Double-inclusion model and overall moduli of multi-phase composites.” Mech. Mater. 14 (3): 189–206. https://doi.org/10.1016/0167-6636(93)90066-Z.
Hu, W. 2012. “Peridynamic models for dynamic brittle fracture.” Ph.D. dissertation, Dept. of Engineering Mechanics, Univ. of Nebraska.
Huang, D., G. Lu, and P. Qiao. 2015. “An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis.” Int. J. Mech. Sci. 94–95: 111–122. https://doi.org/10.1016/j.ijmecsci.2015.02.018.
Jankowiak, T., and T. Lodygowski. 2005. “Identification of parameters of concrete damage plasticity constitutive model.” Found. Civ. Environ. Eng. 6 (1): 53–69.
Juenger, M. C. G., F. Winnefeld, J. L. Provis, and J. H. Ideker. 2011. “Advances in alternative cementitious binders.” Cem. Concr. Res. 41 (12): 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
Ke, Y., A. L. Beaucour, S. Ortola, H. Dumontet, and R. Cabrillac. 2009. “Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete.” Constr. Build. Mater. 23 (8): 2821–2828. https://doi.org/10.1016/j.conbuildmat.2009.02.038.
Kim, H. K., J. H. Jeon, and H. K. Lee. 2012. “Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air.” Constr. Build. Mater. 29 (Apr): 193–200. https://doi.org/10.1016/j.conbuildmat.2011.08.067.
Kim, S.-M., and R. K. A. Al-Rub. 2011. “Meso-scale computational modeling of the plastic-damage response of cementitious composites.” Cem. Concr. Res. 41 (3): 339–358. https://doi.org/10.1016/j.cemconres.2010.12.002.
Lai, X., L. Liu, S. Li, M. Zeleke, Q. Liu, and Z. Wang. 2018. “A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials.” Int. J. Impact Eng. 111 (Jan): 130–146. https://doi.org/10.1016/j.ijimpeng.2017.08.008.
Lai, X., B. Ren, H. Fan, S. Li, C. T. Wu, R. A. Regueiro, and L. Liu. 2015. “Peridynamics simulations of geomaterial fragmentation by impulse loads.” Int. J. Numer. Anal. Methods Geomech. 39 (12): 1304–1330. https://doi.org/10.1002/nag.2356.
Lehoucq, R. B., and S. A. Silling. 2008. “Force flux and the peridynamic stress tensor.” J. Mech. Phys. Solids 56 (4): 1566–1577. https://doi.org/10.1016/j.jmps.2007.08.004.
Li, S. 2008. “Boundary conditions for unit cells from periodic microstructures and their implications.” Compos. Sci. Technol. 68 (9): 1962–1974. https://doi.org/10.1016/j.compscitech.2007.03.035.
Lubachevsky, B. D. 1991. “How to simulate billiards and similar systems.” J. Comput. Phys. 94 (2): 255–283. https://doi.org/10.1016/0021-9991(91)90222-7.
Lubachevsky, B. D., and F. H. Stillinger. 1990. “Geometric properties of random disk packings.” J. Stat. Phys. 60 (5–6): 561–583. https://doi.org/10.1007/BF01025983.
Lubachevsky, B. D., F. H. Stillinger, and E. N. Pinson. 1991. “Disks vs. spheres: Contrasting properties of random packings.” J. Stat. Phys. 64 (3–4): 501–524. https://doi.org/10.1007/BF01048304.
Lutz, M. P., P. J. M. Monteiro, and R. W. Zimmerman. 1997. “Inhomogeneous interfacial transition zone model for the bulk modulus of mortar.” Cem. Concr. Res. 27 (7): 1113–1122. https://doi.org/10.1016/S0008-8846(97)00086-0.
Makarious, A. S., I. I. Bashter, A. E. S. Abdo, M. S. A. Azim, and W. A. Kansouh. 1996. “On the utilization of heavy concrete for radiation shielding.” Ann. Nucl. Energy 23 (3): 195–206. https://doi.org/10.1016/0306-4549(95)00021-1.
Meier, H. A., E. Kuhl, and P. Steinmann. 2008. “A note on the generation of periodic granular microstructures based on grain size distributions.” Int. J. Numer. Anal. Methods Geomech. 32 (5): 509. https://doi.org/10.1002/nag.635.
Mori, T., and K. Tanaka. 1973. “Average stress in matrix and average elastic energy of materials with misfitting inclusions.” Acta Metall. 21 (5): 571–574. https://doi.org/10.1016/0001-6160(73)90064-3.
Motamedi, D., and A. S. Milani. 2013. “3D nonlinear XFEM simulation of delamination in unidirectional composite laminates: A sensitivity analysis of modeling parameters.” Open J. Compos. Mater. 3 (04): 113. https://doi.org/10.4236/ojcm.2013.34012.
Nguyen, L. H., A.-L. Beaucour, S. Ortola, and A. Noumowé. 2014. “Influence of the volume fraction and the nature of fine lightweight aggregates on the thermal and mechanical properties of structural concrete.” Constr. Build. Mater. 51 (Jan): 121–132. https://doi.org/10.1016/j.conbuildmat.2013.11.019.
Nilsen, A. U., P. J. M. Monteiro, and O. E. Gjørv. 1995. “Estimation of the elastic moduli of lightweight aggregate.” Cem. Concr. Res. 25 (2): 276–280. https://doi.org/10.1016/0008-8846(95)00009-7.
Nunes, L. C. S., and J. M. L. Reis. 2012. “Estimation of crack-tip-opening displacement and crack extension of glass fiber reinforced polymer mortars using digital image correlation method.” Mater. Des. 33 (Jan): 248–253. https://doi.org/10.1016/j.matdes.2011.07.051.
Pan, B., K. Qian, H. Xie, and A. Asundi. 2009. “Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review.” Meas. Sci. Technol. 20 (6): 062001. https://doi.org/10.1088/0957-0233/20/6/062001.
Park, K., G. H. Paulino, and J. Roesler. 2010. “Cohesive fracture model for functionally graded fiber reinforced concrete.” Cem. Concr. Res. 40 (6): 956–965. https://doi.org/10.1016/j.cemconres.2010.02.004.
Qian, Z., and H. Schlangen. 2013. “Lattice modeling of fracture processes in numerical concrete with irregular shape aggregates.” In FraMCos-8: Proc., 8th Int. Conf. on Fracture Mechanics of Concrete and Concrete Structures, Toledo, Spain, 10-14 March 2013. Barcelona, Spain: International Center for Numerical Methods in Engineering.
Ravikumar, D., S. Peethamparan, and N. Neithalath. 2010. “Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder.” Cem. Concr. Compos. 32 (6): 399–410. https://doi.org/10.1016/j.cemconcomp.2010.03.007.
Ren, B., C. T. Wu, and E. Askari. 2017. “A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis.” Int. J. Impact Eng. 99 (Jan): 14–25. https://doi.org/10.1016/j.ijimpeng.2016.09.003.
Roesler, J., G. H. Paulino, K. Park, and C. Gaedicke. 2007. “Concrete fracture prediction using bilinear softening.” Cem. Concr. Compos. 29 (4): 300–312. https://doi.org/10.1016/j.cemconcomp.2006.12.002.
Sancho, J. M., J. Planas, D. A. Cendón, E. Reyes, and J. C. Gálvez. 2007. “An embedded crack model for finite element analysis of concrete fracture.” Eng. Fract. Mech. 74 (1–2): 75–86. https://doi.org/10.1016/j.engfracmech.2006.01.015.
Silling, S., D. Littlewood, and P. Seleson. 2015. “Variable horizon in a peridynamic medium.” J. Mech. Mater. Struct. 10 (5): 591–612. https://doi.org/10.2140/jomms.2015.10.591.
Silling, S. A. 2000. “Reformulation of elasticity theory for discontinuities and long-range forces.” J. Mech. Phys. Solids 48 (1): 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0.
Silling, S. A., and E. Askari. 2005. “A meshfree method based on the peridynamic model of solid mechanics.” Comput. Struct. 83 (17–18): 1526–1535. https://doi.org/10.1016/j.compstruc.2004.11.026.
Silling, S. A., and F. Bobaru. 2005. “Peridynamic modeling of membranes and fibers.” Int. J. Non Linear Mech. 40 (2–3): 395–409. https://doi.org/10.1016/j.ijnonlinmec.2004.08.004.
Silling, S. A., and J. V. Cox. 2014. Hierarchical multiscale method development for peridynamics.
Silling, S. A., M. Epton, O. Weckner, J. Xu, and E. Askari. 2007. “Peridynamic states and constitutive modeling.” J. Elast. 88 (2): 151–184. https://doi.org/10.1007/s10659-007-9125-1.
Silling, S. A., and R. B. Lehoucq. 2010. “Peridynamic theory of solid mechanics.” In Advances in applied mechanics. edited by H. Aref and E. van der Giessen, 73–168. New York: Elsevier.
Song, S. H., G. H. Paulino, and W. G. Buttlar. 2006. “A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material.” Eng. Fract. Mech. 73 (18): 2829–2848. https://doi.org/10.1016/j.engfracmech.2006.04.030.
Suquet, P. M. 1987. “Introduction.” In Vol. 272 of Homogenization techniques for composite media: Lecture notes in physics, edited by E. Sanchez-Palencia and A. Zaoui. Berlin, Heidelberg: Springer.
Thiele, A. M., A. Jamet, G. Sant, and L. Pilon. 2015. “Annual energy analysis of concrete containing phase change materials for building envelopes.” Energy Convers. Manage. 103 (Oct): 374–386. https://doi.org/10.1016/j.enconman.2015.06.068.
van der Sluis, O., P. J. G. Schreurs, W. A. M. Brekelmans, and H. E. H. Meijer. 2000. “Overall behaviour of heterogeneous elastoviscoplastic materials: Effect of microstructural modelling.” Mech. Mater. 32 (8): 449–462. https://doi.org/10.1016/S0167-6636(00)00019-3.
Voyiadjis, G. Z., Z. N. Taqieddin, and P. I. Kattan. 2008. “Anisotropic damage–plasticity model for concrete.” Int. J. Plast. 24 (10): 1946–1965. https://doi.org/10.1016/j.ijplas.2008.04.002.
Wang, Y., X. Zhou, Y. Wang, and Y. Shou. 2018. “A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids.” Int. J. Solids Struct. 134 (Mar): 89–115. https://doi.org/10.1016/j.ijsolstr.2017.10.022.
Xia, Z., C. Zhou, Q. Yong, and X. Wang. 2006. “On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites.” Int. J. Solids Struct. 43 (2): 266–278. https://doi.org/10.1016/j.ijsolstr.2005.03.055.
Yang, C. C. 1998. “Effect of the transition zone on the elastic moduli of mortar.” Cem. Concr. Res. 28 (5): 727–736. https://doi.org/10.1016/S0008-8846(98)00035-0.
Ye, C., J. Shi, and G. J. Cheng. 2012. “An extended finite element method (XFEM) study on the effect of reinforcing particles on the crack propagation behavior in a metal–matrix composite.” Int. J. Fatigue 44 (Nov): 151–156. https://doi.org/10.1016/j.ijfatigue.2012.05.004.
Zanjani Zadeh, V., and C. P. Bobko. 2014. “Nanomechanical characteristics of lightweight aggregate concrete containing supplementary cementitious materials exposed to elevated temperature.” Constr. Build. Mater. 51 (Jan): 198–206. https://doi.org/10.1016/j.conbuildmat.2013.10.034.
Zhou, X.-P., X.-B. Gu, and Y.-T. Wang. 2015. “Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks.” Int. J. Rock Mech. Min. Sci. 80 (Dec): 241–254. https://doi.org/10.1016/j.ijrmms.2015.09.006.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 7July 2019

History

Received: Jun 18, 2018
Accepted: Dec 12, 2018
Published online: May 8, 2019
Published in print: Jul 1, 2019
Discussion open until: Oct 8, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Rhode Island, Kingston, RI 02881 (corresponding author). ORCID: https://orcid.org/0000-0001-5339-7708. Email: [email protected]
Canio Hoffarth
Postdoctoral Research Associate, School of Sustainable Engineering and the Built Environment, Arizona State Univ., Tempe, AZ 85281.
Bo Ren
Senior Scientist, Livermore Software Technology Corporation, 7374 Las Positas Rd., Livermore, CA 94550.
Benjamin Spencer
Computational Scientist, Fuels Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415.
Gaurav Sant, M.ASCE
Associate Professor, Dept. of Civil and Environmental Engineering and Materials Science and Engineering, Univ. of California Los Angeles, Los Angeles, CA 90095.
Subramaniam D. Rajan, M.ASCE
Professor, School of Sustainable Engineering and the Built Environment, Arizona State Univ., Tempe, AZ 85281.
Narayanan Neithalath, M.ASCE
Professor, School of Sustainable Engineering and the Built Environment, Arizona State Univ., Tempe, AZ 85281.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share