Technical Papers
Sep 11, 2018

Atomistic Simulations of Length-Scale Effect of Bioinspired Brittle-Matrix Nanocomposite Models

Publication: Journal of Engineering Mechanics
Volume 144, Issue 11

Abstract

Atomistic simulations are performed to investigate the effect of length scale on the mechanical properties and associated plasticity of bioinspired brittle-matrix nanocomposites. The regularly staggered arrangements of stiff platelets reinforced in compliant matrix which is inspired by the nanostructure of nacre and bone is considered in the study. Although extensive studies have been done to understand the effect of length scale on nanocrystalline materials, studies on the size effect in nanocomposites are very limited. The results of the atomistic simulations are compared with those of the metallic matrix nanocomposites available in the literature. It is found that the number of lattice unit cells in the transverse gap between the platelets and the properties of the interface play significant roles in determining the critical length scale. Moreover, the critical length scale may not significantly depend on the constituent materials properties. These findings could provide guidelines in the design of tough ceramic–matrix composites.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abraham, F. F. 1996. “Dynamics of brittle fracture with variable elasticity.” Phys. Rev. Lett. 77 (5): 869–872. https://doi.org/10.1103/PhysRevLett.77.869.
Abraham, F. F., D. Brodbeck, W. E. Rudge, and X. Xu. 1997. “A molecular dynamics investigation of rapid fracture mechanics.” J. Mech. Phys. Solids 45 (9): 1595–1619. https://doi.org/10.1016/S0022-5096(96)00103-2.
Anup, S., S. M. Sivakumar, and G. K. Suraishkumar. 2008. “Influence of relative strength of constituents on the overall strength and toughness of bone.” J. Mech. Med. Biol. 8 (4): 527–539. https://doi.org/10.1142/S0219519408002747.
Anup, S., S. M. Sivakumar, and G. K. Suraishkumar. 2010. “Influence of viscoelasticity of protein on the toughness of bone.” J. Mech. Behav. Biomed. Mater. 3 (3): 260–267. https://doi.org/10.1016/j.jmbbm.2009.10.007.
Armstrong, R. W. 1970. “The influence of polycrystal grain size on several mechanical properties of materials.” Metall. Mater. Trans. 1 (5): 1169–1176. https://doi.org/10.1007/BF02900227.
Baimova, J. A., and S. V. Dmitriev. 2011. “High-energy mesoscale strips observed in two-dimensional atomistic modeling of plastic deformation of nano-polycrystal.” Comput. Mater. Sci. 50 (4): 1414–1417. https://doi.org/10.1016/j.commatsci.2010.11.024.
Barthelat, F. 2010. “Nacre from mollusk shells: A model for high-performance structural materials.” Bioinspiration Biomimetics 5 (3): 035001. https://doi.org/10.1088/1748-3182/5/3/035001.
Bouville, F., E. Maire, S. Meille, B. Van de Moortèle, A. J. Stevenson, and S. Deville. 2014. “Strong, tough and stiff bioinspired ceramics from brittle constituents.” Nat. Mater. 13 (5): 508–514. https://doi.org/10.1038/nmat3915.
Broedling, N. C., A. Hartmaier, M. J. Buehler, and H. Gao. 2008. “The strength limit in a bio-inspired metallic nanocomposite.” J. Mech. Phys. Solids 56 (3): 1086–1104. https://doi.org/10.1016/j.jmps.2007.06.006.
Buehler, M. J. 2008. Atomistic modeling of materials failure. New York: Springer.
Chang, H.-J., J. Segurado, O. Rodríguez de la Fuente, B. M. Pabón, and J. LLorca. 2013. “Molecular dynamics modeling and simulation of void growth in two dimensions.” Modell. Simul. Mater. Sci. Eng. 21 (7): 075010. https://doi.org/10.1088/0965-0393/21/7/075010.
Corni, I., T. J. Harvey, J. A. Wharton, K. R. Stokes, F. C. Walsh, and R. J. K. Wood. 2012. “A review of experimental techniques to produce a nacre-like structure.” Bioinspiration Biomimetics 7 (3): 031001. https://doi.org/10.1088/1748-3182/7/3/031001.
Dao, M., L. Lu, R. J. Asaro, J. Dehosson, and E. Ma. 2007. “Toward a quantitative understanding of mechanical behavior of nanocrystalline metals.” Acta Mater. 55 (12): 4041–4065. https://doi.org/10.1016/j.actamat.2007.01.038.
Gao, H., B. Ji, I. L. Jäger, E. Arzt, and P. Fratzl. 2003. “Materials become insensitive to flaws at nanoscale: Lessons from nature.” Proc. Natl. Acad. Sci. 100 (10): 5597–5600. https://doi.org/10.1073/pnas.0631609100.
Gil Sevillano, J., P. van Houtte, and E. Aernoudt. 1980. “Large strain work hardening and textures.” Prog. Mater. Sci. 25 (2–4): 69–134. https://doi.org/10.1016/0079-6425(80)90001-8.
Gu, G. X., F. Libonati, S. D. Wettermark, and M. J. Buehler. 2017. “Printing nature: Unraveling the role of nacre’s mineral bridges.” J. Mech. Behav. Biomed. Mater. 76 (Dec): 135–144. https://doi.org/10.1016/j.jmbbm.2017.05.007.
Gu, G. X., I. Su, S. Sharma, J. L. Voros, Z. Qin, and M. J. Buehler. 2016. “Three-dimensional-printing of bio-inspired composites.” J. Biomech. Eng. 138 (2): 021006. https://doi.org/10.1115/1.4032423.
Hall, E. O. 1951. “The deformation and ageing of mild steel: III discussion of results.” Proc. Phys. Soc. Sect. B 64 (9): 747. https://doi.org/10.1088/0370-1301/64/9/303.
Hansen, N. 2004. “Hall-Petch relation and boundary strengthening.” Scr. Mater. 51 (8): 801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002.
Holian, B. L., N. J. Wagner, S. P. Chen, W. G. Hoover, C. G. Hoover, J. E. Hammerberg, and T. D. Dontje. 1991. “Effects of pairwise versus many-body forces on high-stress plastic deformation.” Phys. Rev. A 43 (6): 2655–2661. https://doi.org/10.1103/PhysRevA.43.2655.
Huang, D., Q. Zhang, and P. Qiao. 2011. “Molecular dynamics evaluation of strain rate and size effects on mechanical properties of FCC nickel nanowires.” Comput. Mater. Sci. 50 (3): 903–910. https://doi.org/10.1016/j.commatsci.2010.10.028.
Jeon, J. B., B.-J. Lee, and Y. W. Chang. 2011. “Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron.” Scr. Mater. 64 (6): 494–497. https://doi.org/10.1016/j.scriptamat.2010.11.019.
Launey, M. E., E. Munch, D. H. Alsem, E. Saiz, A. P. Tomsia, and R. O. Ritchie. 2010. “A novel biomimetic approach to the design of high-performance ceramic-metal composites.” J. R. Soc. Interface 7 (46): 741–753. https://doi.org/10.1098/rsif.2009.0331.
Le Ferrand, H., F. Bouville, T. P. Niebel, and A. R. Studart. 2015. “Magnetically assisted slip casting of bioinspired heterogeneous composites.” Nat. Mater 14 (11): 1172. https://doi.org/10.1038/nmat4419.
Libonati, F., and M. J. Buehler. 2017. “Advanced structural materials by bioinspiration.” Adv. Eng. Mater. 19 (5): 1600787. https://doi.org/10.1002/adem.201600787.
Libonati, F., A. K. Nair, L. Vergani, and M. J. Buehler. 2013. “Fracture mechanics of hydroxyapatite single crystals under geometric confinement.” J. Mech. Behav. Biomed. Mater. 20 (Apr): 184–191. https://doi.org/10.1016/j.jmbbm.2012.12.005.
Mathiazhagan, S., and S. Anup. 2016a. “Influence of platelet aspect ratio on the mechanical behavior of bio-inspired nanocomposites using molecular dynamics.” J. Mech. Behav. Biomed. Mater. 59 (Jun): 21–40. https://doi.org/10.1016/j.jmbbm.2015.12.008.
Mathiazhagan, S., and S. Anup. 2016b. “Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics.” Phys. Lett. A 380 (36): 2849–2853. https://doi.org/10.1016/j.physleta.2016.06.046.
Mathiazhagan, S., and S. Anup. 2016c. “Mechanical behaviour of bio-inspired brittle-matrix nanocomposites under different strain rates using molecular dynamics.” Mol. Simul. 42 (18): 1490–1501. https://doi.org/10.1080/08927022.2016.1205192.
Meyers, M. A., A. Mishra, and D. J. Benson. 2006. “Mechanical properties of nanocrystalline materials.” Prog. Mater. Sci. 51 (4): 427–556. https://doi.org/10.1016/j.pmatsci.2005.08.003.
Ovid’ko, I. A. 2015. “Micromechanics of fracturing in nanoceramics.” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373 (2038): 20140129. https://doi.org/10.1098/rsta.2014.0129.
Pan, Z., Y. Li, and Q. Wei. 2008. “Tensile properties of nanocrystalline tantalum from molecular dynamics simulations.” Acta Mater. 56 (14): 3470–3480. https://doi.org/10.1016/j.actamat.2008.03.025.
Pei, L., C. Lu, K. Tieu, X. Zhao, L. Zhang, K. Cheng, and G. Michal. 2015. “Brittle versus ductile fracture behaviour in nanotwinned FCC crystals.” Mater. Lett. 152 (Aug): 65–67. https://doi.org/10.1016/j.matlet.2015.03.074.
Petch, N. 1953. “The cleavage strength of polycrystals.” J. Iron Steel Inst. 174 (5): 25–28.
Plimpton, S. 1995. “Fast parallel algorithms for short-range molecular dynamics.” J. Comput. Phys. 117 (1): 1–19. https://doi.org/10.1006/jcph.1995.1039.
Rapaport, D. C. 2004. The art of molecular dynamics simulation. New York: Cambridge University Press.
Sakhavand, N., and R. Shahsavari. 2015. “Universal composition-structure–property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures.” Nat. Commun. 6 (1): 6523. https://doi.org/10.1038/ncomms7523.
Schiøtz, J., and K. W. Jacobsen. 2003. “A maximum in the strength of nanocrystalline copper.” Science 301 (5638): 1357–1359. https://doi.org/10.1126/science.1086636.
Schiøtz, J., F. D. D. Tolla, and K. W. Jacobsen. 1998. “Softening of nanocrystalline metals at very small grain sizes.” Nature 391 (6667): 561–563. https://doi.org/10.1038/35328.
Sen, D., and M. J. Buehler. 2008. “Crystal size controlled deformation mechanism: Breakdown of dislocation mediated plasticity in single nanocrystals under geometric confinement.” Phys. Rev. B 77 (19): 195439. https://doi.org/10.1103/PhysRevB.77.195439.
Sen, D., and M. J. Buehler. 2009. “Size and geometry effects on flow stress in bioinspired de novo metal-matrix nanocomposites.” Adv. Eng. Mater. 11 (10): 774–781. https://doi.org/10.1002/adem.200900125.
Stukowski, A. 2010. “Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool.” Modell. Simul. Mater. Sci. Eng. 18 (1): 015012. https://doi.org/10.1088/0965-0393/18/1/015012.
Voter, A. 1993. Embedded atom method potentials for seven fcc metals: Ni, Pd, Pt, Cu, Ag, Au, and Al. New Mexico: Los Alamos National Laboratory.
Wagner, H. D. 2007. “Nanocomposites: Paving the way to stronger materials.” Nat. Nanotechnol. 2 (12): 742–744. https://doi.org/10.1038/nnano.2007.401.
Wang, C.-A., Y. Huang, Q. Zan, H. Guo, and S. Cai. 2000. “Biomimetic structure design—A possible approach to change the brittleness of ceramics in nature.” Mater. Sci. Eng. C 11 (1): 9–12. https://doi.org/10.1016/S0928-4931(00)00133-8.
Wegst, U. G. K., H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie. 2015. “Bioinspired structural materials.” Nat. Mater. 14 (1): 23–36. https://doi.org/10.1038/nmat4089.
Weingarten, N. S., and R. L. Selinger. 2007. “Size effects and dislocation patterning in two-dimensional bending.” J. Mech. Phys. Solids 55 (6): 1182–1195. https://doi.org/10.1016/j.jmps.2006.11.011.
Wichmann, M. H., K. Schulte, and H. D. Wagner. 2008. “On nanocomposite toughness.” Compos. Sci. Technol. 68 (1): 329–331. https://doi.org/10.1016/j.compscitech.2007.06.027.
Wilkerson, R. P., B. Gludovatz, J. Watts, A. P. Tomsia, G. E. Hilmas, and R. O. Ritchie. 2016. “A novel approach to developing biomimetic (‘nacre-like’) metal-compliant-phase (nickel-alumina) ceramics through coextrusion.” Adv. Mater. 28 (45): 10061–10067. https://doi.org/10.1002/adma.201602471.
Wilkerson, R. P., B. Gludovatz, J. Watts, A. P. Tomsia, G. E. Hilmas, and R. O. Ritchie. 2018. “A study of size effects in bioinspired, ‘nacre-like’, metal-compliant-phase (nickel-alumina) coextruded ceramics.” Acta Mater. 148 (Apr): 147–155. https://doi.org/10.1016/j.actamat.2018.01.046.
Wolf, D., V. Yamakov, S. Phillpot, A. Mukherjee, and H. Gleiter. 2005. “Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments?” Acta Mater. 53 (1): 1–40. https://doi.org/10.1016/j.actamat.2004.08.045.
Wu, Z., Y.-W. Zhang, M. H. Jhon, H. Gao, and D. J. Srolovitz. 2012. “Nanowire failure: Long = brittle and short = ductile.” Nano Lett. 12 (2): 910–914. https://doi.org/10.1021/nl203980u.
Xiao, C., R. A. Mirshams, S. H. Whang, and W. M. Yin. 2001. “Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel.” Mater. Sci. Eng. A 301 (1): 35–43. https://doi.org/10.1016/S0921-5093(00)01392-7.
Yaraghi, N. A., and D. Kisailus. 2018. “Biomimetic structural materials: Inspiration from design and assembly.” Ann. Rev. Phys. Chem. 69 (1): 23–57. https://doi.org/10.1146/annurev-physchem-040215-112621.
Zhang, L., C. Lu, J. Zhang, and K. Tieu. 2016. “A dual deformation mechanism of grain boundary at different stress stages.” Mater. Lett. 167 (Mar): 278–283. https://doi.org/10.1016/j.matlet.2015.12.063.
Zhang, Z., B. Liu, Y. Huang, K. Hwang, and H. Gao. 2010. “Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution.” J. Mech. Phys. Solids 58 (10): 1646–1660. https://doi.org/10.1016/j.jmps.2010.07.004.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 144Issue 11November 2018

History

Received: Jun 1, 2018
Accepted: Jun 5, 2018
Published online: Sep 11, 2018
Published in print: Nov 1, 2018
Discussion open until: Feb 11, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

S. Mathiazhagan [email protected]
Research Scholar and Associate Professor, Dept. of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala, India (corresponding author). Email: [email protected]; [email protected]; Presently, Postdoctoral Research Scholar, Dept. of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Dept. of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share